1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
use super::SoundSource;
use std::vec;
pub struct ChannelConverter<T: SoundSource> {
inner: T,
channels: u16,
}
impl<T: SoundSource> ChannelConverter<T> {
pub fn new(inner: T, channels: u16) -> Self {
Self { inner, channels }
}
}
impl<T: SoundSource> SoundSource for ChannelConverter<T> {
fn channels(&self) -> u16 {
self.channels
}
fn sample_rate(&self) -> u32 {
self.inner.sample_rate()
}
fn reset(&mut self) {
self.inner.reset()
}
fn write_samples(&mut self, buffer: &mut [i16]) -> usize {
if self.inner.channels() == 1 {
let len = buffer.len() / self.channels as usize;
let len = self.inner.write_samples(&mut buffer[0..len]);
for i in (0..len).rev() {
for c in 0..self.channels as usize {
buffer[i * self.channels as usize + c] = buffer[i];
}
}
len * self.channels as usize
} else if self.channels == 1 {
let mut in_buffer = vec![0i16; buffer.len() * self.inner.channels() as usize];
let len = self.inner.write_samples(&mut in_buffer);
let mut sum: i32 = 0;
for i in 0..len {
sum += in_buffer[i] as i32;
if (i + 1) % self.inner.channels() as usize == 0 {
buffer[i / self.inner.channels() as usize] =
(sum / self.inner.channels() as i32) as i16;
sum = 0;
}
}
len / self.inner.channels() as usize
} else {
unimplemented!("ChannelConventer only convert from 1 channel, or to 1 channel")
}
}
}
pub struct SampleRateConverter<T: SoundSource> {
inner: T,
sample_rate: u32,
in_buffer: Box<[i16]>,
out_len: usize,
len: usize,
iter: usize,
}
impl<T: SoundSource> SampleRateConverter<T> {
pub fn new(inner: T, sample_rate: u32) -> Self {
use gcd::Gcd;
let gcd = inner.sample_rate().gcd(sample_rate) as usize;
let in_buffer = vec![0; inner.sample_rate() as usize / gcd * inner.channels() as usize]
.into_boxed_slice();
let out_len = sample_rate as usize / gcd * inner.channels() as usize;
Self {
len: in_buffer.len(),
in_buffer,
iter: out_len,
out_len,
inner,
sample_rate,
}
}
}
impl<T: SoundSource> SoundSource for SampleRateConverter<T> {
fn channels(&self) -> u16 {
self.inner.channels()
}
fn sample_rate(&self) -> u32 {
self.sample_rate
}
fn reset(&mut self) {
self.inner.reset();
self.iter = self.out_len;
self.len = self.in_buffer.len();
}
fn write_samples(&mut self, buffer: &mut [i16]) -> usize {
let mut i = 0;
let channels = self.inner.channels() as usize;
if self.in_buffer.len() == channels {
return self.inner.write_samples(buffer);
}
while i < buffer.len() {
if self.iter + channels >= self.out_len * self.len / self.in_buffer.len() {
if self.len < self.in_buffer.len() {
return i;
}
self.len = self.inner.write_samples(&mut self.in_buffer);
self.iter = 0;
}
let j = ((self.iter / channels) * self.in_buffer.len()) as f32 / self.out_len as f32;
let t = j.fract();
let j = j as usize * channels;
for c in 0..channels {
buffer[i + c] = (self.in_buffer[j + c] as f32 * (1.0 - t)
+ self.in_buffer[j + c + channels] as f32 * t)
as i16;
}
self.iter += channels;
i += channels;
}
buffer.len()
}
}