1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
//! a collection of useful features for working with arrays
#![cfg_attr(not(test), no_std)]
#![allow(incomplete_features, internal_features)]
#![feature(
effects,
const_refs_to_cell,
generic_const_exprs,
core_intrinsics,
iter_intersperse,
const_trait_impl,
maybe_uninit_array_assume_init,
inline_const,
array_windows,
iter_map_windows
)]
#![warn(
clippy::undocumented_unsafe_blocks,
clippy::missing_const_for_fn,
clippy::missing_safety_doc,
clippy::suboptimal_flops,
unsafe_op_in_unsafe_fn,
clippy::dbg_macro,
clippy::use_self,
missing_docs
)]
/// The prelude. You should
/// ```
/// use atools::prelude::*;
/// ```
pub mod prelude {
#[doc(inline)]
pub use super::{
pervasive::prelude::*, range, splat, Array, ArrayTools, Chunked, CollectArray, Couple,
DropFront, Flatten, Join, Pop, Trunc, Tuple,
};
#[doc(inline)]
pub use core::array::from_fn;
}
#[repr(C)]
struct Pair<X, Y>(X, Y);
use core::{
array::from_fn, intrinsics::transmute_unchecked, mem::ManuallyDrop as MD,
mem::MaybeUninit as MU,
};
pub mod pervasive;
mod tuple;
pub use tuple::*;
/// Convenience function for when clonage is required; prefer `[T; N]` if possible. Also useful if `N` should be inferred.
pub fn splat<T: Clone, const N: usize>(a: T) -> [T; N] {
from_fn(|_| a.clone())
}
/// Creates a array of indices.
/// ```
/// # use atools::prelude::*;
/// assert_eq!(range::<5>(), [0, 1, 2, 3, 4]);
/// ```
pub const fn range<const N: usize>() -> [usize; N] {
let mut out = unsafe { MU::<[MU<usize>; N]>::uninit().assume_init() };
let mut i = 0usize;
while i < out.len() {
out[i] = MU::new(i);
i += 1;
}
unsafe { transmute_unchecked(out) }
}
/// Collect an iterator into a array.
pub trait CollectArray<T> {
/// Collect an iterator into a array.
///
/// # Panics
///
/// if the array isn't big enough.
fn carr<const N: usize>(&mut self) -> [T; N];
}
impl<T, I: Iterator<Item = T>> CollectArray<T> for I {
fn carr<const N: usize>(&mut self) -> [T; N] {
from_fn(|_| self.next().unwrap())
}
}
/// Pop parts of a array.
/// Use
/// ```
/// let [t, arr @ ..] = [1, 2];
/// ```
/// when possible. If the length of the array is a const generic, use
/// ```
/// # use atools::prelude::*;
/// let (t, arr) = [1, 2].pop_front();
/// ```
#[const_trait]
pub trait Pop<T, const N: usize> {
/// Pop the front of a array.
/// ```
/// # use atools::prelude::*;
/// let (t, arr) = b"abc".pop_front();
/// # assert_eq!(t, b'a');
/// # assert_eq!(arr, *b"bc");
/// ```
fn pop_front(self) -> (T, [T; N - 1]);
/// Pop the back (end) of a array.
/// ```
/// # use atools::prelude::*;
/// let (arr, t) = [0.1f32, 0.2, 0.3].pop();
/// # assert_eq!(arr, [0.1, 0.2]);
/// assert_eq!(t, 0.3);
/// ```
fn pop(self) -> ([T; N - 1], T);
}
impl<T, const N: usize> const Pop<T, N> for [T; N] {
fn pop_front(self) -> (T, [T; N - 1]) {
// SAFETY: hi crater
unsafe { core::intrinsics::transmute_unchecked(self) }
}
fn pop(self) -> ([T; N - 1], T) {
// SAFETY: i am evil
unsafe { core::intrinsics::transmute_unchecked(self) }
}
}
/// Removes the last element of a array. The opposite of [`DropFront`].
pub trait Trunc<T, const N: usize> {
/// Remove the last element of a array.
/// You can think of this like <code>a.[pop()](Pop::pop).0</code>
/// ```
/// # use atools::prelude::*;
/// let a = [1u64, 2].trunc();
/// assert_eq!(a, [1]);
/// ```
fn trunc(self) -> [T; N - 1];
}
impl<const N: usize, T> Trunc<T, N> for [T; N] {
fn trunc(self) -> [T; N - 1] {
self.pop().0
}
}
/// Remove the first element of a array. The opposite of [`Trunc`].
pub trait DropFront<T, const N: usize> {
/// Removes the first element.
fn drop_front(self) -> [T; N - 1];
}
impl<const N: usize, T> DropFront<T, N> for [T; N] {
fn drop_front(self) -> [T; N - 1] {
self.pop_front().1
}
}
/// Join scalars together.
#[const_trait]
pub trait Join<T, const N: usize, const O: usize, U> {
/// Join a array and an scalar together. For joining two arrays together, see [`Couple`].
/// ```
/// # use atools::prelude::*;
/// let a = [1, 2].join(3);
/// let b = 1.join([2, 3]);
/// let c = 1.join(2).join(3);
/// ```
fn join(self, with: U) -> [T; N + O];
}
/// Couple two arrays together.
#[const_trait]
pub trait Couple<T, const N: usize, const O: usize> {
/// Couple two arrays together. This could have been [`Join`], but the methods would require disambiguation.
/// ```
/// # use atools::prelude::*;
/// let a = 1.join(2).couple([3, 4]);
/// ```
fn couple(self, with: [T; O]) -> [T; N + O];
}
impl<T, const N: usize, const O: usize> const Couple<T, N, O> for [T; N] {
fn couple(self, with: [T; O]) -> [T; N + O] {
// SAFETY: adjacent
unsafe { transmute_unchecked(Pair(self, with)) }
}
}
impl<T, const N: usize> const Join<T, N, 1, T> for [T; N] {
fn join(self, with: T) -> [T; N + 1] {
self.couple([with])
}
}
impl<T> const Join<T, 1, 1, T> for T {
fn join(self, with: T) -> [T; 2] {
[self, with]
}
}
impl<T, const O: usize> const Join<T, 1, O, [T; O]> for T {
fn join(self, with: [T; O]) -> [T; 1 + O] {
[self].couple(with)
}
}
pub(crate) const fn assert_zero(x: usize) -> usize {
if x != 0 {
panic!("expected zero");
} else {
0
}
}
/// 🍪
#[allow(private_bounds)]
#[const_trait]
pub trait Chunked<T, const N: usize> {
/// Chunks.
/// This will compile fail if `N ∤ (does not divide) C`
/// ```
/// # use atools::prelude::*;
/// assert_eq!(range::<6>().chunked::<3>(), [[0, 1, 2], [3, 4, 5]]);
/// ```
#[allow(private_bounds)]
fn chunked<const C: usize>(self) -> [[T; C]; N / C]
where
// N % C == 0
[(); assert_zero(N % C)]:;
}
impl<const N: usize, T> const Chunked<T, N> for [T; N] {
#[allow(private_bounds)]
fn chunked<const C: usize>(self) -> [[T; C]; N / C]
where
[(); assert_zero(N % C)]:,
{
// SAFETY: N != 0 && wont leak as N % C == 0.
unsafe { MD::new(self).as_ptr().cast::<[[T; C]; N / C]>().read() }
}
}
/// Flatten arrays.
#[const_trait]
pub trait Flatten<T, const N: usize, const N2: usize> {
/// Takes a `[[T; N]; N2]`, and flattens it to a `[T; N * N2]`.
///
/// # Examples
///
/// ```
/// # #![feature(generic_const_exprs)]
/// # use atools::prelude::*;
/// assert_eq!([[1, 2, 3], [4, 5, 6]].flatten(), [1, 2, 3, 4, 5, 6]);
///
/// assert_eq!(
/// [[1, 2, 3], [4, 5, 6]].flatten(),
/// [[1, 2], [3, 4], [5, 6]].flatten(),
/// );
///
/// let array_of_empty_arrays: [[i32; 0]; 5] = [[], [], [], [], []];
/// assert!(array_of_empty_arrays.flatten().is_empty());
///
/// let empty_array_of_arrays: [[u32; 10]; 0] = [];
/// assert!(empty_array_of_arrays.flatten().is_empty());
/// ```
fn flatten(self) -> [T; N * N2];
}
impl<T, const N: usize, const N2: usize> const Flatten<T, N, N2> for [[T; N]; N2] {
fn flatten(self) -> [T; N * N2] {
// SAFETY: layout is the same.
unsafe { core::intrinsics::transmute_unchecked(self) }
}
}
/// Array tools.
pub trait ArrayTools<T, const N: usize> {
/// Skip `BY` elements.
fn skip<const BY: usize>(self) -> [T; N - BY];
/// Skip every `BY` elements.
///
/// ```
/// # use atools::prelude::*;
/// let x = range::<5>().step::<2>();
/// assert_eq!(x, [0, 2, 4]);
/// let x = range::<20>().step::<5>();
/// assert_eq!(x, [0, 5, 10, 15]);
/// assert_eq!(range::<50>().step::<3>(), [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]);
/// ```
fn step<const STEP: usize>(self) -> [T; 1 + (N - 1) / (STEP)];
/// Zip arrays together.
fn zip<U>(self, with: [U; N]) -> [(T, U); N];
/// Intersperse a element in between items.
/// ```
/// # use atools::prelude::*;
/// let x = range::<3>().intersperse(5);
/// assert_eq!(x, [0, 5, 1, 5, 2]);
/// ```
fn intersperse(self, with: T) -> [T; (N * 2) - 1]
where
T: Clone;
/// Run a function on every element.
fn each(self, apply: impl FnMut(T));
/// Embed the index.
fn enumerate(self) -> [(T, usize); N];
/// Take `M` elements, discarding the rest.
/// ```
/// # use atools::prelude::*;
/// assert_eq!(range::<50>().take::<5>(), range::<5>());
/// ```
fn take<const M: usize>(self) -> [T; M];
/// Get the sliding windows of this array.
/// ```
/// # use atools::prelude::*;
/// assert_eq!(range::<5>().windowed::<2>(), [&[0, 1], &[1, 2], &[2, 3], &[3, 4]]);
/// ```
fn windowed<const W: usize>(&self) -> [&[T; W]; N - W + 1];
/// Inspect every element of this array.
fn inspect(self, f: impl FnMut(&T)) -> Self;
/// Reverse this array.
fn rev(self) -> Self;
/// Interleave items from two arrays.
/// ```
/// # use atools::prelude::*;
/// assert_eq!([0u8, 2, 4].interleave([1, 3, 5]), [0, 1, 2, 3, 4, 5]);
/// ```
fn interleave(self, with: [T; N]) -> [T; N * 2];
/// [Cartesian product](https://en.wikipedia.org/wiki/Cartesian_product) (`A × B`) of two arrays.
/// ```
/// # use atools::prelude::*;
/// assert_eq!([1u64, 2].cartesian_product(&["Π", "Σ"]), [(1, "Π"), (1, "Σ"), (2, "Π"), (2, "Σ")]);
/// ```
fn cartesian_product<U: Clone, const M: usize>(&self, with: &[U; M]) -> [(T, U); N + M]
where
T: Clone;
/// Sorts it. This uses <code>[[T](slice)]::[sort_unstable](slice::sort_unstable)</code>.
fn sort(self) -> Self
where
T: Ord;
/// Sum of the array.
fn sum(self) -> T
where
T: core::iter::Sum<T>;
/// Product of the array.
fn product(self) -> T
where
T: core::iter::Product<T>;
}
impl<T, const N: usize> ArrayTools<T, N> for [T; N] {
fn skip<const BY: usize>(self) -> [T; N - BY] {
self.into_iter().skip(BY).carr()
}
fn step<const STEP: usize>(self) -> [T; 1 + (N - 1) / (STEP)] {
self.into_iter().step_by(STEP).carr()
}
fn zip<U>(self, with: [U; N]) -> [(T, U); N] {
self.into_iter().zip(with).carr()
}
fn intersperse(self, with: T) -> [T; (N * 2) - 1]
where
T: Clone,
{
self.into_iter().intersperse(with).carr()
}
fn each(self, apply: impl FnMut(T)) {
self.into_iter().for_each(apply);
}
fn enumerate(self) -> [(T, usize); N] {
let mut n = 0;
self.map(|x| {
let o = n;
n += 1;
(x, o)
})
}
fn take<const M: usize>(self) -> [T; M] {
self.into_iter().take(M).carr()
}
fn windowed<const W: usize>(&self) -> [&[T; W]; N - W + 1] {
self.array_windows().carr()
}
fn inspect(self, f: impl FnMut(&T)) -> Self {
self.iter().for_each(f);
self
}
fn rev(self) -> Self {
self.into_iter().rev().carr()
}
fn interleave(self, with: [T; N]) -> [T; N * 2] {
let mut which = true;
let mut a = self.into_iter();
let mut b = with.into_iter();
from_fn(|_| {
which = !which;
match which {
false => a.next().unwrap(),
true => b.next().unwrap(),
}
})
}
fn cartesian_product<U: Clone, const M: usize>(&self, with: &[U; M]) -> [(T, U); N + M]
where
T: Clone,
{
self.iter()
.flat_map(|a| with.iter().map(move |b| (a.clone(), b.clone())))
.carr()
}
fn sort(mut self) -> Self
where
T: Ord,
{
<[T]>::sort_unstable(&mut self);
self
}
fn sum(self) -> T
where
T: core::iter::Sum<T>,
{
self.into_iter().sum()
}
fn product(self) -> T
where
T: core::iter::Product<T>,
{
self.into_iter().product()
}
}