1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/*!
Atomic operations on potentially uninitialized integers.
## Motivation
Copying types containing uninitialized bytes (e.g., padding), via the standard library's atomic types is [undefined behavior because the copy goes through integers][undefined-behavior].
This crate provides a way to soundly perform such operations.
## Platform Support
Currently, x86, x86_64, ARM (v6+), AArch64, RISC-V, MIPS32r2, MIPS64r2, PowerPC, s390x, and MSP430 are supported.
| target_arch | primitives | load/store | swap | CAS |
| --------------------------------- | --------------------------------------------------- |:----------:|:-----:|:-----:|
| x86 | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64 | ✓ | ✓ | ✓\[1] |
| x86_64 | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64 | ✓ | ✓ | ✓ |
| x86_64 (+cmpxchg16b) | i128,u128 | ✓ | ✓ | ✓ |
| arm (v6+) | isize,usize,i8,u8,i16,u16,i32,u32 | ✓ | ✓\[1] | ✓\[1] |
| arm (v6 except v6-m, v7-a) | i64,u64 | ✓ | ✓ | ✓ |
| aarch64 \[2] | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64,i128,u128 | ✓ | ✓ | ✓ |
| riscv32 | isize,usize,i8,u8,i16,u16,i32,u32 | ✓ | ✓\[1] | ✓\[1] |
| riscv64 | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64 | ✓ | ✓\[1] | ✓\[1] |
| mips \[3] | isize,usize,i8,u8,i16,u16,i32,u32 | ✓ | ✓ | ✓ |
| mips64 \[3] | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64 | ✓ | ✓ | ✓ |
| powerpc \[3] | isize,usize,i8,u8,i16,u16,i32,u32 | ✓ | ✓ | ✓ |
| powerpc64 \[3] | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64 | ✓ | ✓ | ✓ |
| powerpc64 (le or pwr8+) \[3] \[4] | i128,u128 | ✓ | ✓ | ✓ |
| s390x \[3] | isize,usize,i8,u8,i16,u16,i32,u32,i64,u64,i128,u128 | ✓ | ✓ | ✓ |
| msp430 \[3] | isize,usize,i8,u8,i16,u16 | ✓ | | |
\[1] ARM's atomic RMW operations are not available on v6-m (thumbv6m). RISC-V's atomic RMW operations are not available on targets without the A (or G which means IMAFD) extension such as riscv32i, riscv32imc, etc. x86's atomic CAS is not available on 80386 (target-cpu `i386`).<br>
\[2] If target features such as `lse` and `lse2` are enabled at compile-time, more efficient instructions are used.<br>
\[3] Requires nightly due to `#![feature(asm_experimental_arch)]`.<br>
\[4] target-cpu `pwr8`, `pwr9`, or `pwr10`.<br>
Feel free to submit an issue if your target is not supported yet.
## Related Projects
- [portable-atomic]: Portable atomic types including support for 128-bit atomics, atomic float, etc.
- [atomic-memcpy]: Byte-wise atomic memcpy.
[atomic-memcpy]: https://github.com/taiki-e/atomic-memcpy
[portable-atomic]: https://github.com/taiki-e/portable-atomic
[undefined-behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
*/
#![no_std]
#![doc(test(
no_crate_inject,
attr(
deny(warnings, rust_2018_idioms, single_use_lifetimes),
allow(dead_code, unused_variables)
)
))]
#![warn(
missing_debug_implementations,
missing_docs,
rust_2018_idioms,
single_use_lifetimes,
unreachable_pub,
unsafe_op_in_unsafe_fn
)]
#![warn(
clippy::pedantic,
// lints for public library
clippy::alloc_instead_of_core,
clippy::exhaustive_enums,
clippy::exhaustive_structs,
clippy::std_instead_of_alloc,
clippy::std_instead_of_core,
// lints that help writing unsafe code
clippy::default_union_representation,
clippy::trailing_empty_array,
clippy::transmute_undefined_repr,
clippy::undocumented_unsafe_blocks,
// misc
clippy::inline_asm_x86_att_syntax,
clippy::missing_inline_in_public_items,
)]
#![allow(
clippy::doc_markdown,
clippy::missing_errors_doc,
clippy::module_inception,
clippy::too_many_lines,
clippy::type_complexity
)]
#![cfg_attr(
not(any(
target_arch = "x86",
target_arch = "x86_64",
target_arch = "arm",
target_arch = "aarch64",
target_arch = "riscv32",
target_arch = "riscv64",
)),
feature(asm_experimental_arch)
)]
#[cfg(test)]
extern crate std;
#[macro_use]
mod utils;
#[cfg(test)]
#[macro_use]
mod tests;
mod arch;
pub mod raw;
#[cfg(doc)]
use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst};
use core::{
cell::UnsafeCell,
fmt,
mem::{self, MaybeUninit},
sync::atomic::Ordering,
};
use crate::raw::{AtomicCompareExchange, AtomicLoad, AtomicStore, AtomicSwap, Primitive};
/// A potentially uninitialized integer type which can be safely shared between threads.
///
/// This type has the same in-memory representation as the underlying
/// integer type, `MaybeUninit<T>`.
#[repr(C)]
pub struct AtomicMaybeUninit<T: Primitive> {
v: UnsafeCell<MaybeUninit<T>>,
/// `[T::Align; 0]` ensures alignment is at least that of `T::Align`.
///
/// This is needed because x86's u64 is 4-byte aligned and x86_64's u128 is
/// 8-byte aligned and atomic operations normally require alignment greater
/// than or equal to the size.
_align: [T::Align; 0],
}
impl<T: Primitive> From<MaybeUninit<T>> for AtomicMaybeUninit<T> {
/// Creates a new atomic value from a potentially uninitialized integer.
#[inline]
fn from(v: MaybeUninit<T>) -> Self {
Self::new(v)
}
}
impl<T: Primitive> From<T> for AtomicMaybeUninit<T> {
/// Creates a new atomic value from an initialized integer.
#[inline]
fn from(v: T) -> Self {
Self::new(MaybeUninit::new(v))
}
}
impl<T: Primitive> fmt::Debug for AtomicMaybeUninit<T> {
#[allow(clippy::missing_inline_in_public_items)] // fmt is not hot path
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad(core::any::type_name::<Self>())
}
}
// Send is implicitly implemented.
// SAFETY: `T` is `Sync` and any data races are prevented by atomic intrinsics.
unsafe impl<T: Primitive> Sync for AtomicMaybeUninit<T> {}
// UnwindSafe is implicitly implemented.
impl<T: Primitive> core::panic::RefUnwindSafe for AtomicMaybeUninit<T> {}
impl<T: Primitive> AtomicMaybeUninit<T> {
/// Creates a new atomic value from a potentially uninitialized integer.
///
/// This is `const fn` on Rust 1.61+. See also `const_new` function.
///
/// # Examples
///
/// ```
/// use std::mem::MaybeUninit;
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let v = AtomicMaybeUninit::new(MaybeUninit::new(5_i32));
///
/// // Equivalent to:
/// let v = AtomicMaybeUninit::from(5_i32);
/// ```
#[cfg(not(atomic_maybe_uninit_no_const_fn_trait_bound))]
#[inline]
#[must_use]
pub const fn new(v: MaybeUninit<T>) -> Self {
Self { v: UnsafeCell::new(v), _align: [] }
}
/// Creates a new atomic value from a potentially uninitialized integer.
///
/// This is `const fn` on Rust 1.61+. See also `const_new` function.
#[cfg(atomic_maybe_uninit_no_const_fn_trait_bound)]
#[inline]
#[must_use]
pub fn new(v: MaybeUninit<T>) -> Self {
Self { v: UnsafeCell::new(v), _align: [] }
}
/// Returns a mutable reference to the underlying integer.
///
/// This is safe because the mutable reference guarantees that no other threads are
/// concurrently accessing the atomic data.
///
/// # Examples
///
/// ```
/// use std::mem::MaybeUninit;
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let mut v = AtomicMaybeUninit::from(5_i32);
/// unsafe { assert_eq!((*v.get_mut()).assume_init(), 5) }
/// *v.get_mut() = MaybeUninit::new(10);
/// unsafe { assert_eq!((*v.get_mut()).assume_init(), 10) }
/// ```
#[inline]
pub fn get_mut(&mut self) -> &mut MaybeUninit<T> {
self.v.get_mut()
}
/// Consumes the atomic and returns the contained value.
///
/// This is safe because passing `self` by value guarantees that no other threads are
/// concurrently accessing the atomic data.
///
/// # Examples
///
/// ```
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let v = AtomicMaybeUninit::from(5_i32);
/// unsafe { assert_eq!(v.into_inner().assume_init(), 5) }
/// ```
#[inline]
pub fn into_inner(self) -> MaybeUninit<T> {
self.v.into_inner()
}
/// Loads a value from the atomic integer.
///
/// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
/// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
///
/// # Panics
///
/// Panics if `order` is [`Release`] or [`AcqRel`].
///
/// # Examples
///
/// ```
/// use std::sync::atomic::Ordering;
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let v = AtomicMaybeUninit::from(5_i32);
/// unsafe { assert_eq!(v.load(Ordering::Relaxed).assume_init(), 5) }
/// ```
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
pub fn load(&self, order: Ordering) -> MaybeUninit<T>
where
T: AtomicLoad,
{
utils::assert_load_ordering(order);
let mut out = MaybeUninit::<T>::uninit();
// SAFETY: any data races are prevented by atomic intrinsics, the raw
// pointer passed in is valid because we got it from a reference,
// and we've checked the order is valid.
unsafe { T::atomic_load(self.v.get(), &mut out, order) }
out
}
/// Stores a value into the atomic integer.
///
/// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
/// Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
///
/// # Panics
///
/// Panics if `order` is [`Acquire`] or [`AcqRel`].
///
/// # Examples
///
/// ```
/// use std::{mem::MaybeUninit, sync::atomic::Ordering};
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let v = AtomicMaybeUninit::from(5_i32);
/// v.store(MaybeUninit::new(10), Ordering::Relaxed);
/// unsafe { assert_eq!(v.load(Ordering::Relaxed).assume_init(), 10) }
/// ```
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
pub fn store(&self, val: MaybeUninit<T>, order: Ordering)
where
T: AtomicStore,
{
utils::assert_store_ordering(order);
// SAFETY: any data races are prevented by atomic intrinsics, the raw
// pointer passed in is valid because we got it from a reference,
// and we've checked the order is valid.
unsafe { T::atomic_store(self.v.get(), &val, order) }
}
/// Stores a value into the atomic integer, returning the previous value.
///
/// `swap` takes an [`Ordering`] argument which describes the memory ordering
/// of this operation. All ordering modes are possible. Note that using
/// [`Acquire`] makes the store part of this operation [`Relaxed`], and
/// using [`Release`] makes the load part [`Relaxed`].
///
/// # Examples
///
/// ```
/// use std::{mem::MaybeUninit, sync::atomic::Ordering};
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let v = AtomicMaybeUninit::from(5_i32);
/// unsafe {
/// assert_eq!(v.swap(MaybeUninit::new(10), Ordering::Relaxed).assume_init(), 5);
/// assert_eq!(v.load(Ordering::Relaxed).assume_init(), 10);
/// }
/// ```
#[inline]
pub fn swap(&self, val: MaybeUninit<T>, order: Ordering) -> MaybeUninit<T>
where
T: AtomicSwap,
{
utils::assert_swap_ordering(order);
let mut out = MaybeUninit::<T>::uninit();
// SAFETY: any data races are prevented by atomic intrinsics and the raw
// pointer passed in is valid because we got it from a reference.
unsafe { T::atomic_swap(self.v.get(), &val, &mut out, order) }
out
}
/// Stores a value into the atomic integer if the current value is the same as
/// the `current` value.
///
/// The return value is a result indicating whether the new value was written and
/// containing the previous value. On success this value is guaranteed to be equal to
/// `current`.
///
/// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
/// ordering of this operation. `success` describes the required ordering for the
/// read-modify-write operation that takes place if the comparison with `current` succeeds.
/// `failure` describes the required ordering for the load operation that takes place when
/// the comparison fails. Using [`Acquire`] as success ordering makes the store part
/// of this operation [`Relaxed`], and using [`Release`] makes the successful load
/// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
///
/// # Panics
///
/// Panics if `failure` is [`Release`], [`AcqRel`].
///
/// # Notes
///
/// Comparison of two values containing uninitialized bytes may fail even if
/// they are equivalent as Rust's type, because their contents are not frozen
/// until a pointer to the value containing uninitialized bytes is passed to `asm!`.
///
/// For example, the following example could be an infinite loop:
///
/// ```no_run
/// use std::{
/// mem::{self, MaybeUninit},
/// sync::atomic::Ordering,
/// };
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// #[derive(Clone, Copy, PartialEq, Eq)]
/// #[repr(C, align(4))]
/// struct Test(u8, u16);
///
/// unsafe {
/// let x = mem::transmute::<_, MaybeUninit<u32>>(Test(0, 0));
/// let v = AtomicMaybeUninit::new(x);
/// while v
/// .compare_exchange(
/// mem::transmute::<_, MaybeUninit<u32>>(Test(0, 0)),
/// mem::transmute::<_, MaybeUninit<u32>>(Test(1, 0)),
/// Ordering::AcqRel,
/// Ordering::Acquire,
/// )
/// .is_err()
/// {}
/// }
/// ```
///
/// To work around this problem, you need to use a helper like the following.
///
/// ```
/// # if cfg!(valgrind) { return; }
/// # use std::{
/// # mem::{self, MaybeUninit},
/// # sync::atomic::Ordering,
/// # };
/// # use atomic_maybe_uninit::AtomicMaybeUninit;
/// # #[derive(Clone, Copy, PartialEq, Eq)]
/// # #[repr(C, align(4))]
/// # struct Test(u8, u16);
/// // Adapted from https://github.com/crossbeam-rs/crossbeam/blob/crossbeam-utils-0.8.10/crossbeam-utils/src/atomic/atomic_cell.rs#L1081-L1110
/// unsafe fn atomic_compare_exchange(
/// v: &AtomicMaybeUninit<u32>,
/// mut current: Test,
/// new: Test,
/// ) -> Result<Test, Test> {
/// let mut current_raw = mem::transmute::<_, MaybeUninit<u32>>(current);
/// let new_raw = mem::transmute::<_, MaybeUninit<u32>>(new);
/// loop {
/// match v.compare_exchange_weak(current_raw, new_raw, Ordering::AcqRel, Ordering::Acquire)
/// {
/// Ok(_) => break Ok(current),
/// Err(previous_raw) => {
/// let previous = mem::transmute_copy(&previous_raw);
///
/// if !Test::eq(&previous, ¤t) {
/// break Err(previous);
/// }
///
/// // The compare-exchange operation has failed and didn't store `new`. The
/// // failure is either spurious, or `previous` was semantically equal to
/// // `current` but not byte-equal. Let's retry with `previous` as the new
/// // `current`.
/// current = previous;
/// current_raw = previous_raw;
/// }
/// }
/// }
/// }
///
/// unsafe {
/// let x = mem::transmute::<_, MaybeUninit<u32>>(Test(0, 0));
/// let v = AtomicMaybeUninit::new(x);
/// while atomic_compare_exchange(&v, Test(0, 0), Test(1, 0)).is_err() {}
/// }
/// ```
///
/// See [crossbeam-rs/crossbeam#315](https://github.com/crossbeam-rs/crossbeam/issues/315) for more details.
///
/// Also, Valgrind reports "Conditional jump or move depends on uninitialized value(s)"
/// error if there is such comparison.
///
/// # Examples
///
/// ```
/// use std::{mem::MaybeUninit, sync::atomic::Ordering};
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// unsafe {
/// let v = AtomicMaybeUninit::from(5_i32);
///
/// assert_eq!(
/// v.compare_exchange(
/// MaybeUninit::new(5),
/// MaybeUninit::new(10),
/// Ordering::Acquire,
/// Ordering::Relaxed
/// )
/// .unwrap()
/// .assume_init(),
/// 5
/// );
/// assert_eq!(v.load(Ordering::Relaxed).assume_init(), 10);
///
/// assert_eq!(
/// v.compare_exchange(
/// MaybeUninit::new(6),
/// MaybeUninit::new(12),
/// Ordering::SeqCst,
/// Ordering::Acquire
/// )
/// .unwrap_err()
/// .assume_init(),
/// 10
/// );
/// assert_eq!(v.load(Ordering::Relaxed).assume_init(), 10);
/// }
/// ```
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
pub fn compare_exchange(
&self,
current: MaybeUninit<T>,
new: MaybeUninit<T>,
success: Ordering,
failure: Ordering,
) -> Result<MaybeUninit<T>, MaybeUninit<T>>
where
T: AtomicCompareExchange,
{
utils::assert_compare_exchange_ordering(success, failure);
let mut out = MaybeUninit::<T>::uninit();
// SAFETY: any data races are prevented by atomic intrinsics and the raw
// pointer passed in is valid because we got it from a reference.
let res = unsafe {
T::atomic_compare_exchange(self.v.get(), ¤t, &new, &mut out, success, failure)
};
if res {
Ok(out)
} else {
Err(out)
}
}
/// Stores a value into the atomic integer if the current value is the same as
/// the `current` value.
///
/// This function is allowed to spuriously fail even when the comparison succeeds,
/// which can result in more efficient code on some platforms. The return value
/// is a result indicating whether the new value was written and containing
/// the previous value.
///
/// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
/// ordering of this operation. `success` describes the required ordering for the
/// read-modify-write operation that takes place if the comparison with `current` succeeds.
/// `failure` describes the required ordering for the load operation that takes place when
/// the comparison fails. Using [`Acquire`] as success ordering makes the store part
/// of this operation [`Relaxed`], and using [`Release`] makes the successful load
/// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
///
/// # Panics
///
/// Panics if `failure` is [`Release`], [`AcqRel`].
///
/// # Notes
///
/// Comparison of two values containing uninitialized bytes may fail even if
/// they are equivalent as Rust's type, because their contents are not frozen
/// until a pointer to the value containing uninitialized bytes is passed to `asm!`.
///
/// See [`compare_exchange`](Self::compare_exchange) for details.
///
/// # Examples
///
/// ```
/// use std::{mem::MaybeUninit, sync::atomic::Ordering};
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// let v = AtomicMaybeUninit::from(5_i32);
///
/// unsafe {
/// let mut old = v.load(Ordering::Relaxed);
/// loop {
/// let new = old.assume_init() * 2;
/// match v.compare_exchange_weak(
/// old,
/// MaybeUninit::new(new),
/// Ordering::SeqCst,
/// Ordering::Relaxed,
/// ) {
/// Ok(_) => break,
/// Err(x) => old = x,
/// }
/// }
/// }
/// ```
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
pub fn compare_exchange_weak(
&self,
current: MaybeUninit<T>,
new: MaybeUninit<T>,
success: Ordering,
failure: Ordering,
) -> Result<MaybeUninit<T>, MaybeUninit<T>>
where
T: AtomicCompareExchange,
{
utils::assert_compare_exchange_ordering(success, failure);
let mut out = MaybeUninit::<T>::uninit();
// SAFETY: any data races are prevented by atomic intrinsics and the raw
// pointer passed in is valid because we got it from a reference.
let res = unsafe {
T::atomic_compare_exchange_weak(
self.v.get(),
¤t,
&new,
&mut out,
success,
failure,
)
};
if res {
Ok(out)
} else {
Err(out)
}
}
/// Fetches the value, and applies a function to it that returns an optional
/// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
/// `Err(previous_value)`.
///
/// Note: This may call the function multiple times if the value has been changed from other threads in
/// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
/// only once to the stored value.
///
/// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
/// The first describes the required ordering for when the operation finally succeeds while the second
/// describes the required ordering for loads. These correspond to the success and failure orderings of
/// [`compare_exchange`](Self::compare_exchange) respectively.
///
/// Using [`Acquire`] as success ordering makes the store part
/// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
/// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
///
/// # Panics
///
/// Panics if `fetch_order` is [`Release`], [`AcqRel`].
///
/// # Examples
///
/// ```
/// use std::{mem::MaybeUninit, sync::atomic::Ordering};
///
/// use atomic_maybe_uninit::AtomicMaybeUninit;
///
/// unsafe {
/// let v = AtomicMaybeUninit::from(5_i32);
/// assert_eq!(
/// v.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None).unwrap_err().assume_init(),
/// 5
/// );
/// assert_eq!(
/// v.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(MaybeUninit::new(
/// x.assume_init() + 1
/// )))
/// .unwrap()
/// .assume_init(),
/// 5
/// );
/// assert_eq!(v.load(Ordering::SeqCst).assume_init(), 6);
/// }
/// ```
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
pub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
mut f: F,
) -> Result<MaybeUninit<T>, MaybeUninit<T>>
where
F: FnMut(MaybeUninit<T>) -> Option<MaybeUninit<T>>,
T: AtomicCompareExchange,
{
let mut prev = self.load(fetch_order);
while let Some(next) = f(prev) {
match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
x @ Ok(_) => return x,
Err(next_prev) => prev = next_prev,
}
}
Err(prev)
}
}
macro_rules! int {
($ty:ident, $align:ident) => {
impl crate::raw::Primitive for $ty {}
impl crate::private::PrimitivePriv for $ty {
type Align = crate::private::$align;
}
impl AtomicMaybeUninit<$ty> {
/// Creates a new atomic value from a potentially uninitialized integer.
/// Unlike [`new`](Self::new), this is always `const fn`.
#[inline]
#[must_use]
pub const fn const_new(v: MaybeUninit<$ty>) -> Self {
Self { v: UnsafeCell::new(v), _align: [] }
}
}
static_assert!(mem::size_of::<AtomicMaybeUninit<$ty>>() == mem::size_of::<$ty>());
static_assert!(mem::align_of::<AtomicMaybeUninit<$ty>>() == mem::size_of::<$ty>());
};
}
int!(i8, Align1);
int!(u8, Align1);
int!(i16, Align2);
int!(u16, Align2);
int!(i32, Align4);
int!(u32, Align4);
int!(i64, Align8);
int!(u64, Align8);
int!(i128, Align16);
int!(u128, Align16);
int!(isize, AlignPtr);
int!(usize, AlignPtr);
mod private {
use core::panic::{RefUnwindSafe, UnwindSafe};
// Auto traits is needed to better docs.
pub trait PrimitivePriv: Copy + Send + Sync + Unpin + UnwindSafe + RefUnwindSafe {
// See _align field of AtomicMaybeUninit.
type Align: Send + Sync + Unpin + UnwindSafe + RefUnwindSafe;
}
#[allow(missing_debug_implementations)]
#[repr(align(1))]
pub struct Align1(u8);
#[allow(missing_debug_implementations)]
#[repr(align(2))]
pub struct Align2(u16);
#[allow(missing_debug_implementations)]
#[repr(align(4))]
pub struct Align4(u32);
#[allow(missing_debug_implementations)]
#[repr(align(8))]
pub struct Align8(u64);
#[allow(missing_debug_implementations)]
#[repr(align(16))]
pub struct Align16(u128);
#[cfg(target_pointer_width = "16")]
pub(crate) type AlignPtr = Align2;
#[cfg(target_pointer_width = "32")]
pub(crate) type AlignPtr = Align4;
#[cfg(target_pointer_width = "64")]
pub(crate) type AlignPtr = Align8;
#[cfg(target_pointer_width = "128")]
pub(crate) type AlignPtr = Align16;
}