1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
//! A thread-safe tiny implementation of a *lock-free* interval/timer structure.
//!
//! ## Example
//! ```
//! let period = Duration::from_secs(1);
//! let atomic_interval = AtomicIntervalLight::new(PERIOD);
//!
//! let time_start = Instant::now();
//! let elapsed = loop {
//! if atomic_interval.is_ticked() {
//! break time_start.elapsed();
//! }
//! };
//!
//! println!("Elapsed: {:?}", elapsed);
//!
//! ```
//!
//! ## Memory Ordering
//! Like other standard atomic types, [`AtomicInterval`] requires specifying how the memory
//! accesses have to be synchronized.
//!
//! For more information see the [nomicon](https://doc.rust-lang.org/nomicon/atomics.html).
//!
//! ## AtomicIntervalLight
//! [`AtomicIntervalLight`] is an [`AtomicInterval`]'s variant that does not guarantee
//! any memory synchronization.
#![warn(missing_docs)]
use quanta::Clock;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use std::time::Duration;
/// It implements a timer. It allows checking a periodic interval.
///
/// This structure is meant to be shared across multiple threads and does not
/// require additional sync wrappers. Generally, it can be used with
/// [`Arc<AtomicInterval>`](https://doc.rust-lang.org/std/sync/struct.Arc.html).
///
/// If you want performance maximization (when you do *not* need memory ordering
/// synchronization), [`AtomicIntervalLight`] is a relaxed variant of this class.
pub struct AtomicInterval {
inner: AtomicIntervalImpl,
}
impl AtomicInterval {
/// Creates a new [`AtomicInterval`] with a fixed period interval.
/// The first tick is not instantaneous at the creation of the interval. It means `period`
/// amount of time has to elapsed for the first tick.
pub fn new(period: Duration) -> Self {
Self {
inner: AtomicIntervalImpl::new(period),
}
}
/// Checks whether the interval's tick expired.
/// When it returns `true` then *at least* `period` amount of time has passed
/// since the last tick.
///
/// When a period is passed (i.e., this function return `true`) the internal timer
/// is automatically reset for the next tick.
///
/// It takes two Ordering arguments to describe the memory ordering.
/// `success` describes the required ordering when the period elapsed and the timer
/// has to be reset (*read-modify-write* operation).
/// `failures` describes the required ordering when the period is not passed yet.
///
/// Using [`Ordering::Acquire`] as success ordering makes the store part of this operation
/// [`Ordering::Relaxed`], and using [`Ordering::Release`] makes the successful load
/// [`Ordering::Relaxed`].
/// The failure ordering can only be [`Ordering::SeqCst`], [`Ordering::Acquire`] or
/// [`Ordering::Relaxed`] and must be equivalent to or weaker than the success ordering.
///
/// It can be used in a concurrency context: only one thread can tick the timer per period.
///
/// # Example
/// ```
/// let atomic_interval = AtomicInterval::new(Duration::from_secs(1));
/// let time_start = Instant::now();
///
/// let elapsed = loop {
/// if atomic_interval.is_ticked(Ordering::Relaxed, Ordering::Relaxed) {
/// break time_start.elapsed();
/// }
/// };
///
/// println!("Elapsed: {:?}", elapsed);
/// // Elapsed: 999.842446ms
/// ```
pub fn is_ticked(&self, success: Ordering, failure: Ordering) -> bool {
self.inner.is_ticked::<false>(success, failure).0
}
}
/// A relaxed version of [`AtomicInterval`]: for more information check that.
///
/// All [`Ordering`] are implicit: [`Ordering::Relaxed`].
///
/// On some architecture this version is allowed to spuriously fail.
/// It means [`AtomicIntervalLight::is_ticked`] might return `false` even if
/// the `period` amount of time has passed.
/// It can result in more efficient code on some platforms.
pub struct AtomicIntervalLight {
inner: AtomicIntervalImpl,
}
impl AtomicIntervalLight {
/// Creates a new [`AtomicIntervalLight`] with a fixed period interval.
pub fn new(period: Duration) -> Self {
Self {
inner: AtomicIntervalImpl::new(period),
}
}
/// See [`AtomicInterval::is_ticked`].
pub fn is_ticked(&self) -> bool {
self.inner
.is_ticked::<true>(Ordering::Relaxed, Ordering::Relaxed)
.0
}
}
struct AtomicIntervalImpl {
period: Duration,
clock: Clock,
last_tick: AtomicU64,
}
impl AtomicIntervalImpl {
fn new(period: Duration) -> Self {
let clock = Clock::new();
let last_tick = AtomicU64::new(clock.start());
Self {
period,
clock,
last_tick,
}
}
#[inline(always)]
fn is_ticked<const WEAK_CMP: bool>(
&self,
success: Ordering,
failure: Ordering,
) -> (bool, Duration) {
let current = self.last_tick.load(failure);
let elapsed = self.clock.delta(current, self.clock.end());
if self.period <= elapsed
&& ((!WEAK_CMP
&& self
.last_tick
.compare_exchange(current, self.clock.start(), success, failure)
.is_ok())
|| (WEAK_CMP
&& self
.last_tick
.compare_exchange_weak(current, self.clock.start(), success, failure)
.is_ok()))
{
(true, elapsed)
} else {
(false, elapsed)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use utilities::stress_timer_mt;
#[test_case::test_case(Ordering::SeqCst, Ordering::SeqCst ; "SeqCst")]
#[test_case::test_case(Ordering::Relaxed, Ordering::Relaxed ; "Relaxed")]
fn test_stress_timer_strong_mt(success: Ordering, failure: Ordering) {
stress_timer_mt::<false>(10, success, failure);
}
#[test_case::test_case(Ordering::SeqCst, Ordering::SeqCst ; "SeqCst")]
#[test_case::test_case(Ordering::Relaxed, Ordering::Relaxed ; "Relaxed")]
fn test_stress_timer_weak_mt(success: Ordering, failure: Ordering) {
stress_timer_mt::<true>(10, success, failure);
}
mod utilities {
use super::*;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Barrier;
pub(super) fn stress_timer_mt<const WEAK_CMP: bool>(
num_iter: usize,
success: Ordering,
failure: Ordering,
) {
let num_threads = num_cpus::get();
let num_samples = 1000;
let period = Duration::from_millis(1);
let atomic_interval = Arc::new(AtomicIntervalImpl::new(period));
let barrier_start = Arc::new(Barrier::new(num_threads));
for _ in 0..num_iter {
let (samples_sender, samples_receiver) = mpsc::channel();
#[allow(clippy::needless_collect)]
let threads = (0..num_threads)
.map(|_| {
let atomic_interval = atomic_interval.clone();
let samples_sender = samples_sender.clone();
let barrier_start = barrier_start.clone();
std::thread::spawn(move || {
barrier_start.wait();
loop {
let sample = loop {
let (ticked, elapsed) =
atomic_interval.is_ticked::<WEAK_CMP>(success, failure);
if ticked {
break elapsed;
}
};
if samples_sender.send(sample).is_err() {
break;
}
}
})
})
.collect::<Vec<_>>();
let mut samples = Vec::with_capacity(num_samples);
while samples.len() < num_samples {
samples.push(samples_receiver.recv().unwrap());
}
drop(samples_receiver);
threads
.into_iter()
.for_each(|join_handle| join_handle.join().unwrap());
let min = samples.iter().min().unwrap();
let max = samples.iter().max().unwrap();
if *min < period {
let anticip_error = 1_f64 - min.as_secs_f64() / period.as_secs_f64();
println!(
"Max anticipation error: {:.3}% with {:?}",
anticip_error * 100_f64,
min
);
}
if period < *max {
let delay_error = max.as_secs_f64() / period.as_secs_f64() - 1_f64;
println!(
"Max delay error: {:.3}% with {:?}",
delay_error * 100_f64,
max
);
}
samples
.iter()
.for_each(|elapsed| assert!(*elapsed >= period));
}
}
}
}