1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
//! Provides TokioTp executor specific functionality.
//
use
{
	crate          :: { SpawnHandle, JoinHandle, BlockingHandle } ,
	std            :: { sync::Arc, future::Future               } ,
	futures_task   :: { FutureObj, Spawn, SpawnError            } ,
	tokio::runtime :: { Runtime                                 } ,
};


/// An executor that uses [tokio::runtime::Runtime].
///
/// ## Example
///
/// The following example shows how to pass an executor to a library function.
///
/// ```rust
/// use
/// {
///    futures          :: { task::{ Spawn, SpawnExt } } ,
///    async_executors  :: { TokioTpBuilder            } ,
///    tokio::runtime   :: { Builder                   } ,
///    std::convert     :: { TryFrom                   } ,
///    futures::channel :: { oneshot, oneshot::Sender  } ,
/// };
///
///
/// fn lib_function( exec: impl Spawn, tx: Sender<&'static str> )
/// {
///    exec.spawn( async
///    {
///       tx.send( "I can spawn from a library" ).expect( "send string" );
///
///    }).expect( "spawn task" );
/// }
///
///
/// fn main()
/// {
///    // You must use the builder. This guarantees that TokioTp is always backed up by a threadpool.
///    // You can set other configurations by calling `tokio_builder()` on TokioTpBuilder, so you get
///    // access to the `tokio::runtime::Builder`.
///    //
///    let exec = TokioTpBuilder::new().build().expect( "create tokio threadpool" );
///
///    let program = async
///    {
///       let (tx, rx) = oneshot::channel();
///
///       lib_function( &exec, tx );
///       assert_eq!( "I can spawn from a library", rx.await.expect( "receive on channel" ) );
///    };
///
///    exec.block_on( program );
/// }
/// ```
///
///
/// ## Unwind Safety.
///
/// You must only spawn futures to this API that are unwind safe. Tokio will wrap it in
/// [std::panic::AssertUnwindSafe] and wrap the poll invocation with [std::panic::catch_unwind].
///
/// They reason that this is fine because they require `Send + 'static` on the future. As far
/// as I can tell this is wrong. Unwind safety can be circumvented in several ways even with
/// `Send + 'static` (eg. `parking_lot::Mutex` is `Send + 'static` but `!UnwindSafe`).
///
/// You should make sure that if your future panics, no code that lives on after the spawned task has
/// unwound, nor any destructors called during the unwind can observe data in an inconsistent state.
///
/// If a future is run with `block_on` as opposed to `spawn`, the panic will not be caught and the
/// thread calling `block_on` will be unwound.
///
/// Note that unwind safety is related to logic errors, not related to the memory safety issues that cannot happen
/// in safe rust (memory safety, undefined behavior, unsoundness, data races, ...). See the relevant
/// [catch_unwind RFC](https://github.com/rust-lang/rfcs/blob/master/text/1236-stabilize-catch-panic.md)
/// and it's discussion threads for more info as well as the documentation of [std::panic::UnwindSafe].
//
#[ derive( Debug, Clone ) ]
//
#[ cfg_attr( nightly, doc(cfg( feature = "tokio_tp" )) ) ]
//
pub struct TokioTp
{
	pub(crate) exec: Option< Arc<Runtime> >,
}



impl TokioTp
{
	/// Forwards to [Runtime::block_on].
	//
	pub fn block_on< F: Future >( &self, f: F ) -> F::Output
	{
		self.exec.as_ref().unwrap().block_on( f )
	}


	/// See: [tokio::runtime::Runtime::shutdown_timeout]
	///
	///  This tries to unwrap the Arc<Runtime> we hold, so that works only if no other clones are around. If this is not the
	///  only reference, self will be returned to you as an error. It means you cannot shutdown the runtime because there are
	///  other clones of the executor still alive.
	//
	pub fn shutdown_timeout( mut self, duration: std::time::Duration ) -> Result<(), Self>
	{
		let arc = self.exec.take().unwrap();

		let rt  = match Arc::try_unwrap( arc )
		{
			Ok(rt) => rt,
			Err(arc) =>
			{
				self.exec = Some(arc);
				return Err(self);
			}
		};

		rt.shutdown_timeout( duration );

		Ok(())
	}


	/// See: [tokio::runtime::Runtime::shutdown_background]
	///
	///  This tries to unwrap the Arc<Runtime> we hold, so that works only if no other clones are around. If this is not the
	///  only reference, self will be returned to you as an error. It means you cannot shutdown the runtime because there are
	///  other clones of the executor still alive.
	//
	pub fn shutdown_background( mut self ) -> Result<(), Self>
	{
		let arc = self.exec.take().unwrap();

		let rt  = match Arc::try_unwrap( arc )
		{
			Ok(rt) => rt,
			Err(arc) =>
			{
				self.exec = Some(arc);
				return Err(self);
			}
		};

		rt.shutdown_background();

		Ok(())
	}
}


#[ cfg( feature = "tokio_io" ) ]
//
#[ cfg_attr( nightly, doc(cfg( feature = "tokio_io" )) ) ]
//
impl crate::TokioIo for TokioTp {}


impl Spawn for TokioTp
{
	fn spawn_obj( &self, future: FutureObj<'static, ()> ) -> Result<(), SpawnError>
	{
		// We drop the JoinHandle, so the task becomes detached.
		//
		let _ = self.exec.as_ref().unwrap().spawn( future );

		Ok(())
	}
}



impl<Out: 'static + Send> SpawnHandle<Out> for TokioTp
{
	fn spawn_handle_obj( &self, future: FutureObj<'static, Out> ) -> Result<JoinHandle<Out>, SpawnError>
	{
		let handle = self.exec.as_ref().unwrap().spawn( future );

		Ok( JoinHandle::tokio(handle) )
	}
}



impl crate::YieldNow for TokioTp {}



impl<R: Send + 'static> crate::SpawnBlocking<R> for TokioTp
{
	fn spawn_blocking<F>( &self, f: F ) -> BlockingHandle<R>

		where F: FnOnce() -> R + Send + 'static ,
	{
		let handle = self.exec.as_ref().unwrap().spawn_blocking( f );

		BlockingHandle::tokio( handle )
	}


	fn spawn_blocking_dyn( &self, f: Box< dyn FnOnce()->R + Send > ) -> BlockingHandle<R>
	{
		self.spawn_blocking( f )
	}
}




#[ cfg(all( feature = "timer", not(feature="tokio_timer" )) ) ]
//
#[ cfg_attr( nightly, doc(cfg(all( feature = "timer", feature = "tokio_tp" ))) ) ]
//
impl crate::Timer for TokioTp
{
	fn sleep( &self, dur: std::time::Duration ) -> futures_core::future::BoxFuture<'static, ()>
	{
		Box::pin( futures_timer::Delay::new(dur) )
	}
}



#[ cfg( feature = "tokio_timer" ) ]
//
#[ cfg_attr( nightly, doc(cfg(all( feature = "tokio_timer", feature = "tokio_tp" ))) ) ]
//
impl crate::Timer for TokioTp
{
	fn sleep( &self, dur: std::time::Duration ) -> futures_core::future::BoxFuture<'static, ()>
	{
		Box::pin( tokio::time::sleep(dur) )
	}
}