1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
`async-winit` is free software: you can redistribute it and/or modify it under the terms of one of
the following licenses:
- The GNU Affero General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.
- The Patron License at https://github.com/notgull/async-winit/blob/main/LICENSE-PATRON.md, for
sponsors and contributors, who can ignore the copyleft provisions of the GNU AGPL for this project.
`async-winit` is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General
Public License and the Patron License for more details.
You should have received a copy of the GNU Affero General Public License and the corresponding Patron
License along with `async-winit`. If not, see <https://www.gnu.org/licenses/>.
*/
//! Handle incoming events.
// TODO: Write more tests of holding.
mod waiters;
use std::future::Future;
use std::mem::ManuallyDrop;
use std::ops;
use std::pin::Pin;
use std::sync::atomic::{AtomicPtr, AtomicU64, AtomicUsize, Ordering};
use std::sync::{Arc, Mutex};
use std::task::{Context, Poll, Waker};
use async_broadcast::{Receiver as BroadcastReceiver, Sender as BroadcastSender};
use async_lock::Mutex as AsyncMutex;
use futures_lite::{future, Stream};
use slab::Slab;
pub(crate) use __private::{EventSealed, Internal};
use waiters::{Listener, RegisterResult, Waiters};
/// An event handler.
///
/// This type is used to receive events from the GUI system. Whenever an event occurs, it is sent to
/// all of the listeners of the corresponding event type. The listeners can then process the event
/// asynchronously.
///
/// There are four ways to listen to events:
///
/// - Using the `wait_once()` function, which waits for a single instance of the event. However, there
/// is a race condition where it can miss events in multithreaded environments where the event
/// occurs between the time the event is received and the time the listener is registered. To avoid
/// this, use one of the other methods. However, this method is the most efficient.
/// - Using the `wait_many()` stream, which asynchronously iterates over events.
/// - Using the `wait_direct[_async]()` function, which runs a closure in the event handler. This is
/// good for use cases like drawing.
/// - Using the `wait_guard()` function, which forces the event handler to stop until the event
/// has been completely processed. This is good for use cases like handling suspends.
///
/// This type does not allocate unless you use any waiting functions; therefore, you only pay overhead
/// for events that you use.
pub struct Handler<T: Event> {
inner: AtomicPtr<Inner<T>>,
}
struct Inner<T: Event> {
/// Queue of waiters for waiting once for a new event.
once: Mutex<Waiters<T::Clonable>>,
/// List of direct listeners.
direct: AsyncMutex<Slab<DirectListener<T>>>,
/// Number of holding listeners.
holding: AtomicUsize,
/// Generation of holding listeners.
holding_gen: AtomicU64,
/// Holding state.
holding_state: Mutex<Option<HoldState<T::Clonable>>>,
/// Listeners waiting on a holding state.
holding_waiters: event_listener::Event,
/// Channel for broadcasting events.
broadcast: BroadcastSender<T::Clonable>,
/// The corresponding receiver, to keep it alive.
_recv: BroadcastReceiver<T::Clonable>,
}
type DirectListener<T> =
Box<dyn FnMut(&mut <T as EventSealed>::Unique<'_>) -> DirectFuture + Send + 'static>;
type DirectFuture = Pin<Box<dyn Future<Output = bool> + Send + 'static>>;
/// The state of the hold.
struct HoldState<T> {
/// The actual data.
data: T,
/// The generation of the holding listeners.
gen: u64,
/// The number of holding listeners left to observe the event.
waiters_left: usize,
/// Waker for the top-level future.
waker: Option<Waker>,
}
impl<T: Event> Drop for Handler<T> {
fn drop(&mut self) {
let inner = *self.inner.get_mut();
if !inner.is_null() {
unsafe {
let inner = Arc::from_raw(inner);
drop(inner);
}
}
}
}
impl<T: Event> Handler<T> {
pub(crate) const fn new() -> Self {
Self {
inner: AtomicPtr::new(std::ptr::null_mut()),
}
}
pub(crate) async fn run_with(&self, event: &mut T::Unique<'_>) {
let inner = match self.try_inner() {
Some(inner) => inner,
None => return,
};
let clonable = T::downgrade(event, Internal::new());
inner
.once
.lock()
.unwrap()
.notify(usize::MAX, || clonable.clone());
// Don't broadcast unless someone is listening.
if inner.broadcast.receiver_count() > 1 {
inner.broadcast.try_broadcast(clonable).ok();
}
// Handle direct listeners.
let mut direct = inner.direct.lock().await;
let mut remove = vec![];
for (key, listener) in direct.iter_mut() {
if listener(event).await {
remove.push(key);
}
}
for key in remove {
let _ = direct.remove(key);
}
// Handle held listeners.
let held = inner.holding.load(Ordering::Acquire);
if held > 0 {
let gen = inner.holding_gen.fetch_add(1, Ordering::Acquire);
let waker = future::poll_fn(|cx| Poll::Ready(cx.waker().clone())).await;
{
let mut hold_state = inner.holding_state.lock().unwrap();
// There should be no hold state; create one.
debug_assert!(hold_state.is_none());
*hold_state = Some(HoldState {
data: T::downgrade(event, Internal::new()),
gen,
waiters_left: held,
waker: Some(waker),
});
}
// Drop the lock and wake up a single waiter.
inner.holding_waiters.notify(1);
// Wait for the hold state to be consumed by waiters.
future::poll_fn(|cx| {
let mut hold_state = inner.holding_state.lock().unwrap();
if hold_state.is_none() {
Poll::Ready(())
} else {
hold_state.as_mut().unwrap().waker = Some(cx.waker().clone());
Poll::Pending
}
})
.await;
}
}
/// Wait for the next event.
pub fn wait_once(&self) -> WaitOnce<T> {
WaitOnce {
inner: unsafe {
Pin::new_unchecked(Arc::clone(&ManuallyDrop::new(Arc::from_raw(self.inner()))))
},
listener: Listener::new(),
}
}
/// A stream over received events.
pub fn wait_many(&self) -> WaitMany<T> {
let inner = unsafe { &*self.inner() };
WaitMany {
recv: inner.broadcast.new_receiver(),
}
}
/// Register an async closure be called when the event is received.
pub async fn wait_direct_async<
Fut: Future<Output = bool> + Send + 'static,
F: FnMut(&mut T::Unique<'_>) -> Fut + Send + 'static,
>(
&self,
mut f: F,
) -> usize {
let inner = unsafe { &*self.inner() };
let mut direct = inner.direct.lock().await;
direct.insert(Box::new(move |u| Box::pin(f(u))))
}
/// Register a closure be called when the event is received.
pub async fn wait_direct(
&self,
mut f: impl FnMut(&mut T::Unique<'_>) -> bool + Send + 'static,
) -> usize {
self.wait_direct_async(move |u| std::future::ready(f(u)))
.await
}
/// Remove a direct listener.
pub async fn remove_direct(&self, id: usize) {
let inner = match self.try_inner() {
Some(inner) => inner,
None => return,
};
let mut direct = inner.direct.lock().await;
let _ = direct.remove(id);
}
/// A guard that prevents the event handler from returning before it is processed.
pub fn wait_guard(&self) -> WaitGuard<'_, T> {
let inner = unsafe { &*self.inner() };
let gen = inner.holding_gen.load(Ordering::Acquire);
inner.holding.fetch_add(1, Ordering::AcqRel);
WaitGuard {
inner,
gen,
waiter: None,
}
}
/// Try to get a reference to the inner event.
///
/// Returns `None` if we haven't been initialized yet.
fn try_inner(&self) -> Option<&Inner<T>> {
let ptr = self.inner.load(Ordering::Acquire);
unsafe { ptr.as_ref() }
}
/// Get a reference to the inner event, initializing it if necessary.
fn inner(&self) -> *const Inner<T> {
let mut ptr = self.inner.load(Ordering::Acquire);
if ptr.is_null() {
// Create a new inner event.
let (mut sender, _recv) = async_broadcast::broadcast(16);
sender.set_await_active(false);
sender.set_overflow(true);
let new = Arc::new(Inner::<T> {
broadcast: sender,
direct: AsyncMutex::new(Slab::new()),
holding: AtomicUsize::new(0),
holding_gen: AtomicU64::new(0),
holding_state: Mutex::new(None),
holding_waiters: event_listener::Event::new(),
_recv,
once: Mutex::new(Waiters::new()),
});
// Convert to a raw pointer.
let new_ptr = Arc::into_raw(new) as *mut Inner<T>;
// Try to swap it in.
ptr = self
.inner
.compare_exchange(ptr, new_ptr, Ordering::AcqRel, Ordering::Acquire)
.unwrap_or_else(|x| x);
if ptr.is_null() {
ptr = new_ptr;
} else {
unsafe {
drop(Arc::from_raw(new_ptr));
}
}
}
ptr as _
}
}
impl<T: Event> Unpin for Handler<T> {}
impl<T: Event> Future for Handler<T> {
type Output = T::Clonable;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
Pin::new(&mut &*self).poll(cx)
}
}
impl<T: Event> Future for &Handler<T> {
type Output = T::Clonable;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = *self.get_mut();
let inner = unsafe { &*this.inner() };
let mut table = inner.once.lock().unwrap();
unsafe { table.poll_internal(cx) }
}
}
pin_project_lite::pin_project! {
/// The future returned by [`Handler::wait_once`].
pub struct WaitOnce<T: Event> {
// Back-reference to the table.
inner: Pin<Arc<Inner<T>>>,
// Listener for the next event.
#[pin]
listener: Listener<T::Clonable>
}
impl<T: Event> PinnedDrop for WaitOnce<T> {
fn drop(this: Pin<&mut Self>) {
let this = this.project();
let mut table = this.inner.once.lock().unwrap();
table.remove(this.listener);
}
}
}
impl<T: Event> Future for WaitOnce<T> {
type Output = T::Clonable;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
let inner = this.inner.as_ref();
let mut table = inner.once.lock().unwrap();
// Insert into the table if we haven't already.
if this.listener.as_ref().is_empty() {
table.insert(this.listener.as_mut());
}
// Check for an event.
match table.register(this.listener.as_mut(), cx.waker()) {
RegisterResult::NoTask => panic!("polled future after completion"),
RegisterResult::Task => Poll::Pending,
RegisterResult::Notified(event) => Poll::Ready(event),
}
}
}
/// The stream returned by [`Handler::wait_many`].
pub struct WaitMany<T: Event> {
recv: BroadcastReceiver<T::Clonable>,
}
impl<T: Event> Stream for WaitMany<T> {
type Item = T::Clonable;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
Pin::new(&mut self.recv).poll_next(cx)
}
}
/// A guard that prevents the event handler from returning before it is processed.
pub struct WaitGuard<'a, T: Event> {
/// Back reference to the inner state.
inner: &'a Inner<T>,
/// The generation of the event we're waiting for.
gen: u64,
/// Waiter for a new event.
waiter: Option<event_listener::EventListener>,
}
impl<T: Event> Drop for WaitGuard<'_, T> {
fn drop(&mut self) {
// Decrement the number of holders.
self.inner.holding.fetch_sub(1, Ordering::Release);
// If we're not waiting, we're done.
if self.waiter.is_none() {
return;
}
// If we're mid-waiter, make sure we aren't the last one.
let mut state_lock = self.inner.holding_state.lock().unwrap();
if let Some(ref mut state) = &mut *state_lock {
if state.gen != self.gen {
return;
}
// Decrement the count.
state.waiters_left -= 1;
if state.waiters_left == 0 {
// Wake up the top-level waiter.
if let Some(waker) = state.waker.take() {
std::panic::catch_unwind(|| waker.wake()).ok();
}
*state_lock = None;
}
}
}
}
impl<'a, T: Event> WaitGuard<'a, T> {
/// Wait for the next event and returns a guard that prevents the event handler from returning
/// before it is processed.
pub async fn wait(&mut self) -> HeldGuard<'a, '_, T> {
loop {
{
// Try to acquire the lock.
let mut state_lock = self.inner.holding_state.lock().unwrap();
// If we are waiting...
if let Some(ref mut state) = &mut *state_lock {
// ...and if it's in our generation...
if state.gen == self.gen {
// Update our generation.
self.gen = self.inner.holding_gen.load(Ordering::Acquire);
// ...then we can hold the lock.
return HeldGuard {
inner: self.inner,
data: state.data.clone(),
_guard: self,
};
} else {
// We probably got an event intended for another listener.
self.inner.holding_waiters.notify(1);
// Update our generation.
self.gen = self.inner.holding_gen.load(Ordering::Acquire);
}
}
}
// Begin waiting.
match self.waiter.take() {
Some(listener) => listener.await,
None => {
// Register and try again.
self.waiter = Some(self.inner.holding_waiters.listen());
}
}
}
}
}
/// A guard that prevents the event handler from returning before it is processed.
pub struct HeldGuard<'a, 'b, T: Event> {
/// Inner state.
inner: &'a Inner<T>,
/// The data type.
data: T::Clonable,
/// Back reference to the guard.
_guard: &'b mut WaitGuard<'a, T>,
}
impl<T: Event> ops::Deref for HeldGuard<'_, '_, T> {
type Target = T::Clonable;
#[inline]
fn deref(&self) -> &Self::Target {
&self.data
}
}
impl<T: Event> ops::DerefMut for HeldGuard<'_, '_, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data
}
}
impl<T: Event> Drop for HeldGuard<'_, '_, T> {
fn drop(&mut self) {
// Decrement the number of holders.
let mut state_lock = self.inner.holding_state.lock().unwrap();
let state = state_lock.as_mut().unwrap();
state.waiters_left -= 1;
// If we're out of waiters, we're done.
if state.waiters_left == 0 {
// Wake up the top-level waiter.
if let Some(waker) = state.waker.take() {
std::panic::catch_unwind(|| waker.wake()).ok();
}
*state_lock = None;
} else {
// Otherwise, wake up the next waiter.
drop(state_lock);
self.inner.holding_waiters.notify(1);
}
}
}
/// The type of event that can be sent over a [`Handler`].
///
/// This type is sealed and cannot be implemented outside of this crate.
pub trait Event: EventSealed {}
impl<T: Clone + 'static> Event for T {}
mod __private {
#[doc(hidden)]
pub struct Internal(());
impl Internal {
pub(crate) fn new() -> Self {
Internal(())
}
}
#[doc(hidden)]
pub trait EventSealed {
type Clonable: Clone + 'static;
type Unique<'a>: 'a;
fn downgrade(unique: &mut Self::Unique<'_>, i: Internal) -> Self::Clonable;
}
impl<T: Clone + 'static> EventSealed for T {
type Clonable = T;
type Unique<'a> = T;
fn downgrade(unique: &mut Self::Unique<'_>, _: Internal) -> Self::Clonable {
unique.clone()
}
}
}