1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
use std::{fmt, mem}; use std::panic::{RefUnwindSafe, UnwindSafe}; use std::sync::atomic::Ordering::{Relaxed, Acquire}; use crate::state::ReleaseState::Unlocked; use crate::state::AcquireState::{Available, Queued}; use std::fmt::{Debug, Formatter}; use crate::state::{AcquireStep, Waiter, Permits, AcquireState, ReleaseState}; use std::cell::UnsafeCell; use crate::{AcquireFuture, TryAcquireError, SemaphoreGuard, AcquireFutureArc, SemaphoreGuardArc}; use std::marker::{PhantomPinned, PhantomData}; use crate::waker::AtomicWaker; use std::ptr::null; use std::sync::Arc; use crate::atomic::Atomic; use std::mem::size_of; use crate::release::ReleaseAction; #[allow(unused_imports)] // used by docs use crate::errors::PoisonError; /// An async weighted semaphore. See [crate documentation](index.html) for usage. // This implementation encodes state (the available counter, acquire queue, and cancel queue) into // multiple atomic variables and linked lists. Concurrent acquires (and concurrent cancels) synchronize // by pushing onto a stack with an atomic swap. Releases synchronize with other operations by attempting // to acquire a lock. If the lock is successfully acquired, the release can proceed. Otherwise // the lock is marked dirty to indicate that there is additional work for the lock owner to do. pub struct Semaphore { // The number of available permits or the back of the queue (without next edges). pub(crate) acquire: Atomic<AcquireState>, // A number of releasable permits, and the state of the current release lock. pub(crate) release: Atomic<ReleaseState>, // The front of the queue (with next edges). pub(crate) front: UnsafeCell<*const Waiter>, // The last node swapped from AcquireState (with next edges). pub(crate) middle: UnsafeCell<*const Waiter>, // A stack of nodes that are cancelling. pub(crate) next_cancel: Atomic<*const Waiter>, } unsafe impl Sync for Semaphore {} unsafe impl Send for Semaphore {} impl UnwindSafe for Semaphore {} impl RefUnwindSafe for Semaphore {} impl Debug for Semaphore { fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { match self.acquire.load(Relaxed) { Available(available) => write!(f, "Semaphore::Ready({:?})", available)?, Queued(_) => match self.release.load(Relaxed) { Unlocked(available) => write!(f, "Semaphore::Blocked({:?})", available)?, _ => write!(f, "Semaphore::Unknown")?, }, }; Ok(()) } } impl Semaphore { /// The maximum number of permits that can be made available. This is slightly smaller than /// [`usize::MAX`]. If the number of available permits exceeds this number, it may poison the /// semaphore. /// # Examples /// ``` /// # use async_weighted_semaphore::{Semaphore, SemaphoreGuard}; /// struct ReadWriteLock(Semaphore); /// impl ReadWriteLock { /// fn new() -> Self { /// ReadWriteLock(Semaphore::new(Semaphore::MAX_AVAILABLE)) /// } /// // Acquire one permit, allowing up to MAX_AVAILABLE concurrent readers. /// async fn read(&self) -> SemaphoreGuard<'_> { /// self.0.acquire(1).await.unwrap() /// } /// // The writer acquires all the permits, prevent any concurrent writers or readers. The /// // first-in-first-out priority policy prevents writer starvation. /// async fn write(&self) -> SemaphoreGuard<'_> { /// self.0.acquire(Semaphore::MAX_AVAILABLE).await.unwrap() /// } /// } /// ``` pub const MAX_AVAILABLE: usize = (1 << (size_of::<usize>() * 8 - 3)) - 1; /// Create a new semaphore with an initial number of permits. /// # Examples /// ``` /// use async_weighted_semaphore::Semaphore; /// let semaphore = Semaphore::new(1024); /// ``` pub fn new(initial: usize) -> Self { Semaphore { acquire: Atomic::new(Available(Permits::new(initial))), release: Atomic::new(Unlocked(Permits::new(0))), front: UnsafeCell::new(null()), middle: UnsafeCell::new(null()), next_cancel: Atomic::new(null()), } } /// Wait until there are no older pending calls to [acquire](#method.acquire) and at least `amount` permits available. /// Then consume the requested permits and return a [`SemaphoreGuard`]. /// # Errors /// Returns [`PoisonError`] is the semaphore is poisoned. /// # Examples /// ``` /// # use futures::executor::block_on; /// # use std::future::Future; /// use async_weighted_semaphore::Semaphore; /// async fn limit_concurrency(semaphore: &Semaphore, future: impl Future<Output=()>) { /// let guard = semaphore.acquire(1).await.unwrap(); /// future.await /// } /// ``` pub fn acquire(&self, amount: usize) -> AcquireFuture { AcquireFuture(UnsafeCell::new(Waiter { semaphore: self, step: UnsafeCell::new(AcquireStep::Entering), waker: unsafe { AtomicWaker::new() }, amount, next: UnsafeCell::new(null()), prev: UnsafeCell::new(null()), next_cancel: UnsafeCell::new(null()), }), PhantomData, PhantomPinned) } /// Like [acquire](#method.acquire), but fails if the call would block. /// # Errors /// * Returns [`TryAcquireError::Poisoned`] is the semaphore is poisoned. /// * Returns [`TryAcquireError::WouldBlock`] if a call to `acquire` would have blocked. This can /// occur if there are insufficient available permits or if there is another pending call to acquire. /// # Examples /// ``` /// # use futures::executor::block_on; /// # use std::future::Future; /// use async_weighted_semaphore::Semaphore; /// async fn run_if_safe(semaphore: &Semaphore, future: impl Future<Output=()>) { /// if semaphore.try_acquire(1).is_ok() { /// future.await /// } /// } /// ``` pub fn try_acquire(&self, amount: usize) -> Result<SemaphoreGuard, TryAcquireError> { let mut current = self.acquire.load(Acquire); loop { match current { Queued(_) => return Err(TryAcquireError::WouldBlock), Available(available) => { let available = available.into_usize().ok_or(TryAcquireError::Poisoned)?; if available < amount { return Err(TryAcquireError::WouldBlock); } if self.acquire.cmpxchg_weak_acqrel(&mut current, Available(Permits::new(available - amount))) { return Ok(SemaphoreGuard::new(self, amount)); } } } } } /// Like [acquire](#method.acquire), but takes an [`Arc`] `<Semaphore>` and returns a guard that is `'static`, [`Send`] and [`Sync`]. /// # Examples /// ``` /// # use async_weighted_semaphore::{Semaphore, PoisonError, SemaphoreGuardArc}; /// # use std::sync::Arc; /// use async_channel::{Sender, SendError}; /// // Limit size of a producer-consumer queue /// async fn send<T>(semaphore: &Arc<Semaphore>, /// sender: &Sender<(SemaphoreGuardArc, T)>, /// message: T /// ) -> Result<(), SendError<T>>{ /// match semaphore.acquire_arc(1).await { /// // A semaphore can be poisoned to prevent deadlock when a channel closes. /// Err(PoisonError) => Err(SendError(message)), /// Ok(guard) => match sender.send((guard, message)).await{ /// Err(SendError((guard, message))) => Err(SendError(message)), /// Ok(()) => Ok(()) /// } /// } /// } /// ``` pub fn acquire_arc(self: &Arc<Self>, amount: usize) -> AcquireFutureArc { AcquireFutureArc { arc: self.clone(), inner: unsafe { mem::transmute::<AcquireFuture, AcquireFuture>(self.acquire(amount)) }, } } /// Like [try_acquire](#method.try_acquire), but takes an [`Arc`] `<Semaphore>`, and returns a guard that is `'static`, /// [`Send`] and [`Sync`]. /// # Examples /// ``` /// # use async_weighted_semaphore::{Semaphore, TryAcquireError, SemaphoreGuardArc}; /// # use std::sync::Arc; /// use async_channel::{Sender, TrySendError}; /// // Limit size of a producer-consumer queue /// async fn try_send<T>(semaphore: &Arc<Semaphore>, /// sender: &Sender<(SemaphoreGuardArc, T)>, /// message: T /// ) -> Result<(), TrySendError<T>>{ /// match semaphore.try_acquire_arc(1) { /// Err(TryAcquireError::WouldBlock) => Err(TrySendError::Full(message)), /// // A semaphore can be poisoned to prevent deadlock when a channel closes. /// Err(TryAcquireError::Poisoned) => Err(TrySendError::Closed(message)), /// Ok(guard) => match sender.try_send((guard, message)) { /// Err(TrySendError::Closed((guard, message))) => Err(TrySendError::Closed(message)), /// Err(TrySendError::Full((guard, message))) => Err(TrySendError::Full(message)), /// Ok(()) => Ok(()) /// } /// } /// } /// ``` pub fn try_acquire_arc(self: &Arc<Self>, amount: usize) -> Result<SemaphoreGuardArc, TryAcquireError> { let guard = self.try_acquire(amount)?; let result = SemaphoreGuardArc::new(self.clone(), amount); guard.forget(); Ok(result) } /// Return `amount` permits to the semaphore. This will eventually wake any calls to [acquire](#method.acquire) /// that can succeed with the additional permits. Calling `release` often makes sense after calling /// [`SemaphoreGuard::forget`] or when using the semaphore to signal the number of elements that /// are available for processing. /// # Examples /// ``` /// # use async_weighted_semaphore::{Semaphore, TryAcquireError}; /// use async_channel::{Receiver, RecvError}; /// // Limit size of a producer-consumer queue /// async fn recv<T>(semaphore: &Semaphore, recv: &Receiver<T>) -> Result<T, RecvError>{ /// let result = recv.recv().await?; /// // Note that this only guards elements in the queue, not those being processed after the /// // queue. /// semaphore.release(1); /// Ok(result) /// } /// ``` pub fn release(&self, amount: usize) { unsafe { ReleaseAction { sem: self, releasable: Permits::new(amount) }.release(); } } /// Poison the semaphore, causing all pending and future calls to `acquire` to fail immediately. /// This can be used to unblock pending acquires when the guarded operation would fail anyway. /// # Examples /// ``` /// # use async_weighted_semaphore::{Semaphore, TryAcquireError}; /// # use std::sync::Arc; /// # use async_std::sync::Mutex; /// use async_channel::{Receiver, RecvError}; /// async fn consume(semaphore: &Semaphore, receiver: Receiver<usize>){ /// while let Ok(x) = receiver.recv().await { /// println!("{:?}", x); /// semaphore.release(1); /// } /// // There will be no more calls to recv, so unblock all senders. /// semaphore.poison(); /// } /// ``` pub fn poison(&self) { unsafe { ReleaseAction { sem: self, releasable: Permits::poison() }.release(); } } }