1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//! An async weighted semaphore: a synchronization primitive for limiting concurrent usage of a
//! resource or signaling availability of a resource to a consumer.
//!
//! A [`Semaphore`] starts with an initial counter of permits. Calling [release](#method.release) will increase the
//! counter. Calling [acquire](#method.acquire) will attempt to decrease the counter, waiting if the counter
//! would be negative.
//!
//! # Examples
//! A semaphore can limit memory usage of concurrent futures:
//! ```
//! # use async_weighted_semaphore::Semaphore;
//! # use std::{io};
//! # use async_std::fs;
//! struct ChecksumPool(Semaphore);
//! impl ChecksumPool{
//!     async fn checksum(&self, path: &str) -> io::Result<u64> {
//!         let len = fs::metadata(path).await?.len();
//!         // Acquire enough permits to create a buffer
//!         let _guard = self.0.acquire(len as usize).await.unwrap();
//!         // Create a buffer
//!         let contents = fs::read(path).await?;
//!         Ok(contents.into_iter().map(|x| x as u64).sum::<u64>())
//!         // End of scope: buffer is dropped and then _guard is dropped, releasing the permits.
//!     }
//! }
//! ```
//! A semaphore can limit memory usage of a producer-consumer queue:
//! ```
//! # use async_weighted_semaphore::{Semaphore, SemaphoreGuardArc};
//! # use std::sync::Arc;
//! # use futures::executor::block_on;
//! # use std::mem;
//! # use futures::join;
//! use async_channel::{Sender, Receiver, unbounded, SendError};
//! # block_on(async {
//! let (sender, receiver) = unbounded();
//! let sender = async move {
//!     // The total size of strings in queue and being parsed will not exceed 10.
//!     let capacity = 10;
//!     let semaphore = Arc::new(Semaphore::new(capacity));
//!     for i in 0..100 {
//!         let data = format!("{}", i);
//!         // Don't deadlock if data.len() exceeds capacity.
//!         let permits = data.len().max(capacity);
//!         let guard = semaphore.acquire_arc(permits).await.unwrap();
//!         if let Err(SendError(_)) = sender.send((guard, data)).await {
//!             break;
//!         }
//!     }
//! };
//! let receiver = async {
//!     for i in 0..100 {
//!         if let Ok((guard, data)) = receiver.recv().await{
//!             assert_eq!(Ok(i), data.parse());
//!             mem::drop(data);
//!             // Drop guard after data to ensure data being parsed counts against the capacity.
//!             mem::drop(guard);
//!         }
//!     }
//! };
//! join!(receiver, sender);
//! # });
//! ```
//! A semaphore can signal the availability of data for batch processing:
//! ```
//! # use std::collections::VecDeque;
//! # use async_weighted_semaphore::Semaphore;
//! # use std::sync::Arc;
//! # use futures::executor::block_on;
//! # use async_std::sync::Mutex;
//! # use futures::join;
//! # block_on(async {
//! let buffer1 = Arc::new((Semaphore::new(0), Mutex::new(VecDeque::<u8>::new())));
//! let buffer2 = buffer1.clone();
//! let sender = async move {
//!     for i in 0..100 {
//!         buffer1.1.lock().await.extend(b"AAA");
//!         buffer1.0.release(3);
//!     }
//!     // Indicate no more data will arrive.
//!     buffer1.0.poison();
//! };
//! let receiver = async {
//!     for i in 0..100 {
//!         if let Ok(guard) = buffer2.0.acquire(2).await {
//!             guard.forget();
//!         }
//!         let batch = buffer2.1.lock().await.drain(0..2).collect::<Vec<_>>();
//!         assert!(batch == b"" || batch == b"A" || batch == b"AA");
//!         if batch.len() < 2 {
//!             break;
//!         }
//!     }
//! };
//! join!(receiver, sender);
//! # });
//! ```
//! # Priority
//! Acquiring has "first-in-first-out" semantics: calls to `acquire` finish in the same order that
//! they start. If there is a pending call to `acquire`, a new call to `acquire` will always block,
//! even if there are enough permits available for the new call. This policy reduces starvation and
//! tail latency at the cost of utilization.
//! ```
//! # use async_weighted_semaphore::Semaphore;
//! # use futures::executor::block_on;
//! # block_on(async{
//! # use futures::pin_mut;
//! # use futures::poll;
//! let sem = Semaphore::new(1);
//! let a = sem.acquire(2);
//! let b = sem.acquire(1);
//! pin_mut!(a);
//! pin_mut!(b);
//! assert!(poll!(&mut a).is_pending());
//! assert!(poll!(&mut b).is_pending());
//! # });
//! ```
//!
//! # Poisoning
//! If a guard is dropped while panicking, or the number of available permits exceeds [`Semaphore::MAX_AVAILABLE`],
//! the semaphore will be permanently poisoned. All current and future acquires will fail,
//! and release will become a no-op. This is similar in principle to poisoning a [`std::sync::Mutex`].
//! Explicitly poisoning with [`Semaphore::poison`] can also be useful to coordinate termination
//! (e.g. closing a producer-consumer channel).
//!
//! # Performance
//! [`Semaphore`] uses no heap allocations. Most calls are lock-free. The only operation that may
//! wait for a lock is cancellation: if a [`AcquireFuture`] or [`AcquireFutureArc`] is dropped
//! before [`Future::poll`] returns [`Poll::Ready`], the drop may synchronously wait for a lock.

#![doc(html_root_url = "https://docs.rs/async-weighted-semaphore/0.1.0")]

#[cfg(test)]
#[macro_use]
extern crate lazy_static;

pub use crate::errors::{TryAcquireError, PoisonError};
pub use crate::guard::SemaphoreGuard;
pub use crate::guard::SemaphoreGuardArc;
pub use crate::acquire::{AcquireFuture, AcquireFutureArc};
pub use semaphore::Semaphore;
#[allow(unused_imports)] // used by docs
use std::future::Future;
#[allow(unused_imports)] // used by docs
use std::task::Poll;

mod atomic;
mod waker;
mod guard;
mod state;
mod errors;
mod acquire;
mod release;
#[cfg(test)]
mod tests;
mod semaphore;

#[test]
fn test_readme_deps() {
    version_sync::assert_markdown_deps_updated!("README.md");
}

#[test]
fn test_html_root_url() {
    version_sync::assert_html_root_url_updated!("src/lib.rs");
}