1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Posix based timer

use core::{mem, ptr, time, task};
use core::pin::Pin;
use core::future::Future;

use crate::state::TimerState;
use crate::alloc::boxed::Box;

mod ffi {
    use super::*;

    #[allow(non_camel_case_types)]
    pub type timer_t = usize;

    #[cfg(feature = "c_wrapper")]
    pub unsafe extern "C" fn timer_handler(value: libc::sigval) {
        let state = value.sival_ptr as *const TimerState;
        (*state).wake();
    }

    #[cfg(not(feature = "c_wrapper"))]
    pub unsafe extern "C" fn timer_handler(_sig: libc::c_int, si: *mut libc::siginfo_t, _uc: *mut libc::c_void) {
        let state = (*si).si_value().sival_ptr as *const TimerState;
        (*state).wake();
    }

    #[repr(C)]
    pub struct itimerspec {
        pub it_interval: libc::timespec,
        pub it_value: libc::timespec,
    }

    extern "C" {
        #[allow(unused)]
        pub fn timer_create(clockid: libc::clockid_t, sevp: *mut libc::sigevent, timerid: *mut timer_t) -> libc::c_int;
        pub fn timer_settime(timerid: timer_t, flags: libc::c_int, new_value: *const itimerspec, old_value: *mut itimerspec) -> libc::c_int;
        pub fn timer_delete(timerid: timer_t);
    }
}

#[cfg(not(feature = "c_wrapper"))]
const TIMER_SIG: libc::c_int = 40;

#[cfg(not(feature = "c_wrapper"))]
fn init_sig() {
    let mut sa_mask = mem::MaybeUninit::<libc::sigset_t>::uninit();
    unsafe {
        libc::sigemptyset(sa_mask.as_mut_ptr());
    }

    let timer_sig = libc::sigaction {
        sa_flags: libc::SA_SIGINFO,
        sa_sigaction: ffi::timer_handler as usize,
        sa_mask: unsafe { sa_mask.assume_init() },
        #[cfg(any(target_os = "linux", target_os = "android"))]
        sa_restorer: None,
    };

    unsafe {
        os_assert!(libc::sigaction(TIMER_SIG, &timer_sig, ptr::null_mut()) != -1);
    }
}

#[cfg(feature = "c_wrapper")]
fn time_create(state: *mut TimerState) -> ffi::timer_t {
    #[link(name = "posix_wrapper", lind = "static")]
    extern "C" {
        fn posix_timer(_: Option<unsafe extern "C" fn(value: libc::sigval)>, _: *mut libc::c_void) -> ffi::timer_t;
    }

    let res = unsafe {
        posix_timer(Some(ffi::timer_handler), state as *mut libc::c_void)
    };

    os_assert!(res != 0);
    res
}

#[cfg(not(feature = "c_wrapper"))]
fn time_create(state: *mut TimerState) -> ffi::timer_t {
    let mut event: libc::sigevent = unsafe { mem::zeroed() };

    event.sigev_value = libc::sigval {
        sival_ptr: state as *mut _,
    };
    event.sigev_signo = TIMER_SIG;
    //NOTE: Timer handler is invoked by signal handler
    //      Therefore all limitations are applied to your waker.
    //      To be safe we could use thread, but in this case
    //      we cannot really hope for it to be optimal...
    event.sigev_notify = libc::SIGEV_SIGNAL;

    let mut res = mem::MaybeUninit::<ffi::timer_t>::uninit();

    unsafe {
        os_assert!(ffi::timer_create(libc::CLOCK_REALTIME, &mut event, res.as_mut_ptr()) == 0);
        res.assume_init()
    }
}

fn set_timer_value(fd: ffi::timer_t, timeout: time::Duration) {
    let it_value = libc::timespec {
        tv_sec: timeout.as_secs() as libc::time_t,
        #[cfg(not(any(target_os = "openbsd", target_os = "netbsd")))]
        tv_nsec: timeout.subsec_nanos() as libc::suseconds_t,
        #[cfg(any(target_os = "openbsd", target_os = "netbsd"))]
        tv_nsec: timeout.subsec_nanos() as libc::c_long,
    };

    let new_value = ffi::itimerspec {
        it_interval: unsafe { mem::zeroed() },
        it_value,
    };

    unsafe {
        os_assert!(ffi::timer_settime(fd, 0, &new_value, ptr::null_mut()) == 0);
    }
}

enum State {
    Init(time::Duration),
    Running(ffi::timer_t, Box<TimerState>),
}

///Posix Timer
///
///When using `c_wrapper` feature implementation uses C shim to create timers which call callbacks
///from a separate thread.
///
///Without it, callback is called from signal handler which limits usable operations within the
///callback.
pub struct PosixTimer {
    state: State,
}

impl PosixTimer {
    #[inline]
    ///Creates new instance
    pub const fn new(time: time::Duration) -> Self {
        Self {
            state: State::Init(time),
        }
    }
}

impl super::Timer for PosixTimer {
    #[inline(always)]
    fn new(timeout: time::Duration) -> Self {
        assert_time!(timeout);
        Self::new(timeout)
    }


    #[inline]
    fn is_ticking(&self) -> bool {
        match &self.state {
            State::Init(_) => false,
            State::Running(_, ref state) => !state.is_done(),
        }
    }

    #[inline]
    fn is_expired(&self) -> bool {
        match &self.state {
            State::Init(_) => false,
            State::Running(_, ref state) => state.is_done(),
        }
    }

    fn restart(&mut self, new_value: time::Duration) {
        assert_time!(new_value);

        match &mut self.state {
            State::Init(ref mut timeout) => {
                *timeout = new_value;
            },
            State::Running(fd, ref mut state) => {
                state.reset();
                set_timer_value(*fd, new_value);
            }
        }
    }

    fn restart_ctx(&mut self, new_value: time::Duration, waker: &task::Waker) {
        assert_time!(new_value);

        match &mut self.state {
            State::Init(ref mut timeout) => {
                *timeout = new_value;
            },
            State::Running(fd, ref mut state) => {
                state.register(waker);
                state.reset();
                set_timer_value(*fd, new_value);
            }
        }
    }

    fn cancel(&mut self) {
        match self.state {
            State::Init(_) => (),
            State::Running(fd, ref state) => unsafe {
                state.cancel();
                ffi::timer_settime(fd, 0, &mut mem::zeroed(), ptr::null_mut());
            }
        }
    }
}

impl super::SyncTimer for PosixTimer {
    fn init<R, F: Fn(&TimerState) -> R>(&mut self, init: F) -> R {
        #[cfg(not(feature = "c_wrapper"))]
        {
            extern crate std;
            static RUNTIME: std::sync::Once = std::sync::Once::new();
            RUNTIME.call_once(init_sig);
        }

        if let State::Init(timeout) = self.state {
            let state = Box::into_raw(Box::new(TimerState::new()));
            let fd = time_create(state);

            let state = unsafe { Box::from_raw(state) };
            init(&state);

            set_timer_value(fd, timeout);

            self.state = State::Running(fd, state)
        }

        match &self.state {
            State::Running(_, ref state) => init(state),
            State::Init(_) => unreach!(),
        }
    }
}

impl Future for PosixTimer {
    type Output = ();

    #[inline]
    fn poll(self: Pin<&mut Self>, ctx: &mut task::Context) -> task::Poll<Self::Output> {
        crate::timer::poll_sync(self.get_mut(), ctx)
    }
}

impl Drop for PosixTimer {
    fn drop(&mut self) {
        match self.state {
            State::Init(_) => (),
            State::Running(fd, _) => unsafe {
                ffi::timer_delete(fd);
            }
        }
    }
}