1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
//! # Async-spin-sleep
//!
//! A dedicated timer driver implementation for easy use of high-precision sleep function in
//! numerous async/await context.
//!
//! ## Features
//!
//! - *`system-clock`* (default): Enable use of system clock as a timer source.
//!
use std::{
pin::Pin,
sync::{
atomic::{AtomicIsize, Ordering},
Arc,
},
task::{Context, Poll},
time::{Duration, Instant},
};
use crossbeam::channel;
use driver::{NodeDesc, WakerNode};
/* -------------------------------------------- Init -------------------------------------------- */
#[cfg(target_os = "windows")]
const DEFAULT_SCHEDULE_RESOLUTION: Duration = Duration::from_millis(33);
#[cfg(target_os = "linux")]
const DEFAULT_SCHEDULE_RESOLUTION: Duration = Duration::from_millis(3);
#[cfg(target_os = "macos")]
const DEFAULT_SCHEDULE_RESOLUTION: Duration = Duration::from_millis(10);
#[derive(Debug, derive_setters::Setters)]
#[setters(prefix = "with_")]
pub struct Builder {
/// Default scheduling resolution for this driver. Setting this to a lower value may decrease
/// CPU usage of the driver, but may also dangerously increase the chance of missing a wakeup
/// event due to the OS scheduler.
pub schedule_resolution: Duration,
/// Aborted nodes that are too far from execution may remain in the driver's memory for a long
/// time. This value specifies the maximum number of aborted nodes that can be stored in the
/// driver's memory. If this value is exceeded, the driver will collect garbage.
pub gc_threshold: usize,
/// Set channel capacity. This value is used to initialize the channel that connects the driver
/// and its handles. If the channel is full, the driver will block until the channel is
/// available.
///
/// When [`None`] is specified, an unbounded channel will be used.
#[setters(into)]
pub channel_capacity: Option<usize>,
/// A shared handle to represent naive number of garbage nodes to collect
#[setters(skip)]
gc_counter: Arc<AtomicIsize>,
// Force 'default' only
#[setters(skip)]
_0: (),
}
impl Default for Builder {
fn default() -> Self {
Self {
schedule_resolution: DEFAULT_SCHEDULE_RESOLUTION,
gc_threshold: 1000,
channel_capacity: None,
gc_counter: Default::default(),
_0: (),
}
}
}
impl Builder {
pub fn build(self) -> (Handle, impl FnOnce()) {
self.build_d_ary::<2>()
}
pub fn build_d_ary<const D: usize>(self) -> (Handle, impl FnOnce()) {
let _ = instant::origin(); // Force initialization of the global pivot time
let (tx, rx) = if let Some(cap) = self.channel_capacity {
channel::bounded(cap)
} else {
channel::unbounded()
};
let handle = Handle { tx: tx.clone(), gc_counter: self.gc_counter.clone() };
let driver = move || driver::execute::<D>(self, rx);
(handle, driver)
}
}
pub fn create() -> (Handle, impl FnOnce()) {
Builder::default().build()
}
pub fn create_d_ary<const D: usize>() -> (Handle, impl FnOnce()) {
Builder::default().build_d_ary::<D>()
}
/* ------------------------------------------- Driver ------------------------------------------- */
mod driver {
use std::{
sync::{atomic::Ordering, Weak},
task::Waker,
time::{Duration, Instant},
};
use crossbeam::channel::{self, TryRecvError};
use dary_heap::DaryHeap;
use educe::Educe;
use crate::Builder;
#[derive(Debug)]
pub(crate) enum Event {
SleepUntil(NodeDesc),
}
pub(crate) fn execute<const D: usize>(this: Builder, rx: channel::Receiver<Event>) {
let mut nodes = DaryHeap::<Node, D>::new();
let pivot = Instant::now();
let to_usec = |x: Instant| x.duration_since(pivot).as_micros() as u64;
let resolution_usec = this.schedule_resolution.as_micros() as u64;
// As each node always increment the `gc_counter` by 1 when dropped, and the worker
// decrements the number by 1 when a node is cleared, this value is expected to be a naive
// status of 'aborted but not yet handled' node count, i.e. garbage nodes.
let gc_counter = this.gc_counter;
'worker: loop {
let now = to_usec(Instant::now());
let mut event = if let Some(node) = nodes.peek() {
let remain = node.timeout_usec.saturating_sub(now);
if remain > resolution_usec {
let system_sleep_for = remain - resolution_usec;
let Ok(x) = rx.recv_timeout(Duration::from_micros( system_sleep_for)) else { continue };
x
} else {
'busy_wait: loop {
let now = to_usec(Instant::now());
if now >= node.timeout_usec {
let node = nodes.pop().unwrap();
if let Some(waker) = node.weak_waker.upgrade() {
waker.value.lock().take().expect("logic error").wake();
}
let n_garbage = gc_counter.fetch_sub(1, Ordering::Release);
if n_garbage > this.gc_threshold as isize {
let n_collect = gc(&mut nodes) as _;
gc_counter.fetch_sub(n_collect, Ordering::Release);
}
continue 'worker;
} else {
match rx.try_recv() {
Ok(x) => break 'busy_wait x,
Err(TryRecvError::Disconnected) if nodes.is_empty() => {
break 'worker
}
Err(TryRecvError::Disconnected) | Err(TryRecvError::Empty) => {
std::thread::yield_now();
continue 'busy_wait;
}
}
}
}
}
} else {
let Ok(x) = rx.recv() else {
break
};
x
};
if gc_counter.load(Ordering::Acquire) as usize > this.gc_threshold {
let n_collect = gc(&mut nodes) as _;
gc_counter.fetch_sub(n_collect, Ordering::Release);
}
'flush: loop {
match event {
Event::SleepUntil(desc) => nodes
.push(Node { timeout_usec: to_usec(desc.timeout), weak_waker: desc.waker }),
};
event = match rx.try_recv() {
Ok(x) => x,
Err(TryRecvError::Disconnected) if nodes.is_empty() => break 'worker,
Err(TryRecvError::Disconnected) | Err(TryRecvError::Empty) => break 'flush,
};
}
}
assert!(nodes.is_empty());
assert_eq!(gc_counter.load(Ordering::Relaxed), 0);
}
fn gc<const D: usize>(nodes: &mut DaryHeap<Node, D>) -> usize {
let fn_retain = |x: &Node| x.weak_waker.upgrade().is_some();
let prev_len = nodes.len();
*nodes = {
let mut vec = std::mem::take(nodes).into_vec();
vec.retain(fn_retain);
DaryHeap::from(vec)
};
let n_collected = prev_len - nodes.len();
n_collected
}
#[derive(Debug, Clone)]
pub(crate) struct NodeDesc {
pub timeout: Instant,
pub waker: Weak<WakerNode>,
}
#[derive(Debug, Clone, Educe)]
#[educe(Eq, PartialEq, PartialOrd, Ord)]
pub(crate) struct Node {
#[educe(PartialOrd(method = "cmp_rev_partial"), Ord(method = "cmp_rev"))]
pub timeout_usec: u64,
#[educe(Eq(ignore), PartialEq(ignore), PartialOrd(ignore), Ord(ignore))]
pub weak_waker: Weak<WakerNode>,
}
fn cmp_rev(a: &u64, b: &u64) -> std::cmp::Ordering {
b.cmp(a)
}
fn cmp_rev_partial(a: &u64, b: &u64) -> Option<std::cmp::Ordering> {
b.partial_cmp(a)
}
#[derive(Debug)]
pub(crate) struct WakerNode {
// dsa sads
value: parking_lot::Mutex<Option<Waker>>,
}
impl WakerNode {
pub fn new(waker: Waker) -> Self {
Self { value: parking_lot::Mutex::new(Some(waker)) }
}
pub fn is_expired(&self) -> bool {
self.value.lock().is_none()
}
}
}
/* ------------------------------------------- Handle ------------------------------------------- */
#[derive(Debug, Clone)]
pub struct Handle {
tx: channel::Sender<driver::Event>,
gc_counter: Arc<AtomicIsize>,
}
impl Handle {
/// Returns a future that sleeps for the specified duration.
///
/// [`SleepFuture`] returns the duration that overly passed the specified duration.
pub fn sleep_for(&self, duration: Duration) -> SleepFuture {
self.sleep_until(Instant::now() + duration)
}
/// Returns a future that sleeps until the specified instant.
///
/// [`SleepFuture`] returns the duration that overly passed the specified instant.
pub fn sleep_until(&self, timeout: Instant) -> SleepFuture {
SleepFuture {
tx: self.tx.clone(),
state: SleepState::Pending,
timeout,
gc_counter: self.gc_counter.clone(),
}
}
/// Create an interval controller which wakes up after specified `interval` duration on
/// every call to [`util::Interval::wait`]
pub fn interval(&self, interval: Duration) -> util::Interval {
util::Interval { handle: self.clone(), wakeup_time: Instant::now() + interval, interval }
}
}
pub mod util {
use crate::{instant, Report};
use std::time::{Duration, Instant};
/// Interval controller.
#[derive(Debug, Clone)]
pub struct Interval {
pub(crate) handle: super::Handle,
pub(crate) wakeup_time: Instant,
pub(crate) interval: Duration,
}
impl Interval {
/// Wait until next interval.
///
/// This function will return [`SleepResult`] which contains the duration that overly passed
/// the specified interval. As it internally aligns to the specified interval, it should not
/// be drifted over time, in terms of [`Instant`] clock domain.
///
/// - `minimum_interval`: Minimum interval to wait. This prevents burst after long
/// inactivity on `Interval` object.
pub async fn tick_with_min_interval(
&mut self,
minimum_interval: Duration,
) -> Result<Report, crate::Error> {
assert!(minimum_interval <= self.interval);
let Self { handle, wakeup_time: wakeup, interval } = self;
let result = handle.sleep_until(*wakeup).await;
let now = Instant::now();
*wakeup = *wakeup + *interval;
let minimum_next = now + minimum_interval;
if minimum_next > *wakeup {
// XXX: We use 128 bit integer to avoid overflow in nanosecond domain.
// This is not a perfect solution, but it should be enough for most cases,
// as 'over-sleep' is relatively rare case thus slow path is not a big deal.
let interval_ns = interval.as_nanos();
let num_ticks = ((minimum_next - *wakeup).as_nanos() - 1) / interval_ns + 1;
// Set next wakeup to nearest aligned timestamp.
*wakeup += Duration::from_nanos((interval_ns * num_ticks) as _);
}
result
}
/// A shortcut for [`tick_with_min_interval`] with `minimum_interval` set to half.
pub async fn tick(&mut self) -> Result<Report, crate::Error> {
self.tick_with_min_interval(self.interval / 2).await
}
/// Reset interval to the specified duration.
pub fn set_interval(&mut self, interval: Duration) {
assert!(interval > Duration::default());
self.wakeup_time -= self.interval;
self.wakeup_time += interval;
self.interval = interval;
}
pub fn interval(&self) -> Duration {
self.interval
}
pub fn wakeup_time(&self) -> Instant {
self.wakeup_time
}
/// This method aligns the subsequent tick to a given interval. Following the alignment, the
/// timestamp will conform to the specified interval.
///
/// Parameters:
/// - `now_since_epoch`: A function yielding the current time since the epoch. It's
/// internally converted to an [`Instant`], hence, should return the most recent
/// timestamp.
/// - `align_offset_ns`: This parameter can adjust the alignment timing. For example, an
/// offset of 100us applied to a next tick scheduled at 9000us will push the tick to
/// 9100us.
/// - `initial_interval_tolerance`: This defines the permissible noise level for the initial
/// interval. If set to zero, the actual sleep duration will exceed the interval,
/// potentially causing a tick to be skipped as the actual sleep duration might be twice
/// the interval. It's advisable to set it to 10% of the interval to prevent the
/// `align_clock` command from disrupting the initial interval.
///
/// Note: For example, if `now_since_epoch()` gives 8500us and the interval is 1000us, the
/// subsequent tick will be adjusted to 9000us, aligning with the interval.
pub fn align_with_clock(
&mut self,
now_since_epoch: impl FnOnce() -> Duration,
interval: Option<Duration>, // If none, reuse the previous interval.
initial_interval_tolerance: Option<Duration>, // If none, 10% of the interval.
align_offset_ns: i64,
) {
let prev_trig = self.wakeup_time - self.interval;
let dst_now_ns = now_since_epoch().as_nanos() as i64;
let inst_now = Instant::now();
let interval = interval.unwrap_or(self.interval);
let interval_ns = interval.as_nanos() as i64;
let interval_tolerance =
initial_interval_tolerance.unwrap_or(Duration::from_nanos((interval_ns / 10) as _));
assert!(interval > Duration::default(), "interval must be larger than zero");
assert!(interval_tolerance < interval);
let ticks_to_align = {
let mut val = interval_ns - (dst_now_ns % interval_ns) + align_offset_ns;
if val < 0 {
val += (val / interval_ns + 1) * interval_ns;
}
Duration::from_nanos((val % interval_ns) as _)
};
let mut desired_wake_up = inst_now + ticks_to_align;
if desired_wake_up < prev_trig + interval - interval_tolerance {
desired_wake_up += interval;
debug_assert!(desired_wake_up >= prev_trig + interval - interval_tolerance);
}
self.wakeup_time = desired_wake_up;
self.interval = interval;
}
/// Shortcut for [`Self::align_clock`] from now.
pub fn align_now(
&mut self,
interval: Option<Duration>,
initial_interval_tolerance: Option<Duration>,
align_offset_ns: i64,
) {
self.align_with_clock(
|| instant::time_from_epoch(),
interval,
initial_interval_tolerance,
align_offset_ns,
);
}
/// Shortcut for [`Self::align_clock`] with [`std::time::SystemTime`] as the time source.
#[cfg(feature = "system-clock")]
pub fn align_with_system_clock(
&mut self,
interval: Option<Duration>,
initial_interval_tolerance: Option<Duration>,
align_offset_ns: i64,
) {
self.align_with_clock(
|| {
let now = std::time::SystemTime::now();
now.duration_since(std::time::UNIX_EPOCH).unwrap()
},
interval,
initial_interval_tolerance,
align_offset_ns,
);
}
}
}
mod instant {
use std::time::Instant;
pub(crate) fn origin() -> Instant {
lazy_static::lazy_static!(
static ref PIVOT: Instant = Instant::now();
);
*PIVOT
}
pub(crate) fn time_from_epoch() -> std::time::Duration {
origin().elapsed()
}
}
/* ------------------------------------------- Future ------------------------------------------- */
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct SleepFuture {
tx: channel::Sender<driver::Event>,
gc_counter: Arc<AtomicIsize>,
timeout: Instant,
state: SleepState,
}
#[cfg(test)]
static_assertions::assert_impl_all!(SleepFuture: Send, Sync, Unpin);
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("driver shutdown")]
Shutdown,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Report {
/// Timer has been correctly requested, and woke up normally. Returned value is overslept
/// duration than the requested timeout.
Completed(Duration),
/// Timer has not been requested as the timeout is already expired.
ExpiredTimer(Duration),
}
impl Report {
pub fn overslept(&self) -> Duration {
match self {
Self::Completed(dur) => *dur,
Self::ExpiredTimer(dur) => *dur,
}
}
}
#[derive(Debug)]
enum SleepState {
Pending,
Sleeping(Arc<WakerNode>),
Woken,
}
impl std::future::Future for SleepFuture {
type Output = Result<Report, Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let now = Instant::now();
if let Some(over) = now.checked_duration_since(self.timeout) {
let result = if matches!(self.state, SleepState::Sleeping(_)) {
self.state = SleepState::Woken;
Report::Completed(over)
} else {
Report::ExpiredTimer(over)
};
return Poll::Ready(Ok(result));
}
if matches!(self.state, SleepState::Pending) {
let waker = Arc::new(WakerNode::new(cx.waker().clone()));
let event = driver::Event::SleepUntil(NodeDesc {
timeout: self.timeout,
waker: Arc::downgrade(&waker),
});
if let Err(_) = self.tx.send(event) {
return Poll::Ready(Err(Error::Shutdown));
}
self.state = SleepState::Sleeping(waker);
} else if let SleepState::Sleeping(node) = &self.state {
// We woke up too early. Check if it is due to broken clock monotonicity.
if node.is_expired() {
self.state = SleepState::Woken;
return Poll::Ready(Ok(Report::Completed(Duration::default())));
} else {
// If not, this is a spurious wakeup. We should sleep again.
}
}
Poll::Pending
}
}
impl Drop for SleepFuture {
fn drop(&mut self) {
if !matches!(&self.state, SleepState::Pending) {
self.gc_counter.fetch_add(1, Ordering::Release);
}
}
}