1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
// Copyright 2019 TiKV Project Authors. Licensed under MIT or Apache-2.0.
//! Speed limiter
#[cfg(feature = "standard-clock")]
use crate::clock::StandardClock;
use crate::clock::{BlockingClock, Clock};
use pin_project_lite::pin_project;
use std::{
future::Future,
mem,
ops::Sub,
pin::Pin,
sync::Arc,
sync::{
atomic::{AtomicBool, AtomicUsize, Ordering},
Mutex,
},
task::{Context, Poll},
time::Duration,
};
/// Stores the current state of the limiter.
#[derive(Debug, Clone, Copy)]
struct Bucket<I> {
/// Last updated instant of the bucket. This is used to compare with the
/// current instant to deduce the current bucket value.
last_updated: I,
/// The speed limit (unit: B/s).
speed_limit: f64,
/// Time needed to refill the entire bucket (unit: s).
refill: f64,
/// The number of bytes the bucket is carrying at the time `last_updated`.
/// This value can be negative.
value: f64,
}
impl<I> Bucket<I> {
/// Returns the maximum number of bytes this bucket can carry.
fn capacity(&self) -> f64 {
self.speed_limit * self.refill
}
/// Consumes the given number of bytes from the bucket.
///
/// Returns the duration we need for the consumed bytes to recover.
///
/// This method should only be called when the speed is finite.
fn consume(&mut self, size: f64) -> Duration {
self.value -= size;
if self.value > 0.0 {
Duration::from_secs(0)
} else {
let sleep_secs = self.refill - self.value / self.speed_limit;
Duration::from_secs_f64(sleep_secs)
}
}
/// Reverts the previous consumption of the given number of bytes.
///
/// This method should only be called when the speed is finite
fn unconsume(&mut self, size: f64) {
self.value += size;
}
/// Changes the speed limit.
///
/// The current value will be raised or lowered so that the number of
/// consumed bytes remains constant.
fn set_speed_limit(&mut self, new_speed_limit: f64) {
let old_capacity = self.capacity();
self.speed_limit = new_speed_limit;
if new_speed_limit.is_finite() {
let new_capacity = self.capacity();
if old_capacity.is_finite() {
self.value += new_capacity - old_capacity;
} else {
self.value = new_capacity;
}
}
}
}
impl<I: Copy + Sub<Output = Duration>> Bucket<I> {
/// Refills the bucket to match the value at current time.
///
/// This method should only be called when the speed is finite.
fn refill(&mut self, now: I) {
let elapsed = (now - self.last_updated).as_secs_f64();
let refilled = self.speed_limit * elapsed;
self.value = self.capacity().min(self.value + refilled);
self.last_updated = now;
}
}
/// Builder for [`Limiter`].
///
/// # Examples
///
#[cfg_attr(feature = "standard-clock", doc = "```rust")]
#[cfg_attr(not(feature = "standard-clock"), doc = "```ignore")]
/// use async_speed_limit::Limiter;
/// use std::time::Duration;
///
/// let limiter = <Limiter>::builder(1_048_576.0)
/// .refill(Duration::from_millis(100))
/// .build();
/// # drop(limiter);
/// ```
#[derive(Debug)]
pub struct Builder<C: Clock> {
clock: C,
bucket: Bucket<C::Instant>,
}
impl<C: Clock> Builder<C> {
/// Creates a new limiter builder.
///
/// Use [infinity](`std::f64::INFINITY`) to make the speed unlimited.
pub fn new(speed_limit: f64) -> Self {
let clock = C::default();
let mut result = Self {
bucket: Bucket {
last_updated: clock.now(),
speed_limit: 0.0,
refill: 0.1,
value: 0.0,
},
clock,
};
result.speed_limit(speed_limit);
result
}
/// Sets the speed limit of the limiter.
///
/// Use [infinity](`std::f64::INFINITY`) to make the speed unlimited.
///
/// # Panics
///
/// The speed limit must be positive. Panics if the speed limit is negative,
/// zero, or NaN.
pub fn speed_limit(&mut self, speed_limit: f64) -> &mut Self {
assert!(speed_limit > 0.0, "speed limit must be positive");
self.bucket.speed_limit = speed_limit;
self
}
/// Sets the refill period of the limiter.
///
/// The default value is 0.1 s, which should be good for most use cases. The
/// refill period is ignored if the speed is [infinity](`std::f64::INFINITY`).
///
/// # Panics
///
/// The duration must not be zero, otherwise this method panics.
pub fn refill(&mut self, dur: Duration) -> &mut Self {
assert!(
dur > Duration::from_secs(0),
"refill duration must not be zero"
);
self.bucket.refill = dur.as_secs_f64();
self
}
/// Sets the clock instance used by the limiter.
pub fn clock(&mut self, clock: C) -> &mut Self {
self.clock = clock;
self
}
/// Builds the limiter.
pub fn build(&mut self) -> Limiter<C> {
self.bucket.value = self.bucket.capacity();
self.bucket.last_updated = self.clock.now();
let is_unlimited = self.bucket.speed_limit.is_infinite();
Limiter {
bucket: Arc::new(Mutex::new(self.bucket)),
clock: mem::take(&mut self.clock),
total_bytes_consumed: Arc::new(AtomicUsize::new(0)),
is_unlimited: Arc::new(AtomicBool::new(is_unlimited)),
}
}
}
macro_rules! declare_limiter {
($($default_clock:tt)*) => {
/// A type to control the maximum speed limit of multiple streams.
///
/// When a `Limiter` is cloned, the instances would share the same
/// queue. Multiple tasks can cooperatively respect a global speed limit
/// via clones. Cloning a `Limiter` is cheap (equals to cloning two
/// `Arc`s).
///
/// The speed limit is imposed by awaiting
/// [`consume()`](Limiter::consume()). The method returns a future which
/// sleeps until rate falls below the limit.
///
/// # Examples
///
/// Upload some small files atomically in parallel, while maintaining a
/// global speed limit of 1 MiB/s.
///
#[cfg_attr(feature = "standard-clock", doc = "```rust")]
#[cfg_attr(not(feature = "standard-clock"), doc = "```ignore")]
/// use async_speed_limit::Limiter;
/// use futures_util::future::try_join_all;
///
/// # async {
/// # let files = &[""];
/// # async fn upload(file: &str) -> Result<(), ()> { Ok(()) }
/// let limiter = <Limiter>::new(1_048_576.0);
/// let processes = files
/// .iter()
/// .map(|file| {
/// let limiter = limiter.clone();
/// async move {
/// limiter.consume(file.len()).await;
/// upload(file).await?;
/// Ok(())
/// }
/// });
/// try_join_all(processes).await?;
/// # Ok::<_, ()>(()) };
/// ```
#[derive(Debug, Clone)]
pub struct Limiter<C: Clock $($default_clock)*> {
/// State of the limiter.
// TODO avoid using Arc<Mutex>?
bucket: Arc<Mutex<Bucket<C::Instant>>>,
/// Clock used for time calculation.
clock: C,
/// Statistics of the number of bytes consumed for record. When this
/// number reaches `usize::MAX` it will wrap around.
total_bytes_consumed: Arc<AtomicUsize>,
/// A flag indicates unlimited speed.
is_unlimited: Arc<AtomicBool>,
}
}
}
#[cfg(feature = "standard-clock")]
declare_limiter! { = StandardClock }
#[cfg(not(feature = "standard-clock"))]
declare_limiter! {}
impl<C: Clock> Limiter<C> {
/// Creates a new speed limiter.
///
/// Use [infinity](`std::f64::INFINITY`) to make the speed unlimited.
pub fn new(speed_limit: f64) -> Self {
Builder::new(speed_limit).build()
}
/// Makes a [`Builder`] for further configurating this limiter.
///
/// Use [infinity](`std::f64::INFINITY`) to make the speed unlimited.
pub fn builder(speed_limit: f64) -> Builder<C> {
Builder::new(speed_limit)
}
/// Returns the clock associated with this limiter.
pub fn clock(&self) -> &C {
&self.clock
}
/// Dynamically changes the speed limit. The new limit applies to all clones
/// of this instance.
///
/// Use [infinity](`std::f64::INFINITY`) to make the speed unlimited.
///
/// This change will not affect any tasks scheduled _before_ this call.
pub fn set_speed_limit(&self, speed_limit: f64) {
debug_assert!(speed_limit > 0.0, "speed limit must be positive");
self.bucket.lock().unwrap().set_speed_limit(speed_limit);
self.is_unlimited
.store(speed_limit.is_infinite(), Ordering::Relaxed);
}
/// Returns the current speed limit.
///
/// This method returns [infinity](`std::f64::INFINITY`) if the speed is
/// unlimited.
pub fn speed_limit(&self) -> f64 {
self.bucket.lock().unwrap().speed_limit
}
/// Obtains the total number of bytes consumed by this limiter so far.
///
/// If more than `usize::MAX` bytes have been consumed, the count will wrap
/// around.
pub fn total_bytes_consumed(&self) -> usize {
self.total_bytes_consumed.load(Ordering::Relaxed)
}
/// Resets the total number of bytes consumed to 0.
pub fn reset_statistics(&self) {
self.total_bytes_consumed.store(0, Ordering::Relaxed);
}
/// Consumes several bytes from the speed limiter, returns the duration
/// needed to sleep to maintain the speed limit.
pub fn consume_duration(&self, byte_size: usize) -> Duration {
self.total_bytes_consumed
.fetch_add(byte_size, Ordering::Relaxed);
if self.is_unlimited.load(Ordering::Relaxed) {
return Duration::from_secs(0);
}
#[allow(clippy::cast_precision_loss)]
let size = byte_size as f64;
// Using a lock should be fine,
// as we're not blocking for a long time.
let mut bucket = self.bucket.lock().unwrap();
bucket.refill(self.clock.now());
bucket.consume(size)
}
/// Reverts the consumption of the given bytes size.
pub fn unconsume(&self, byte_size: usize) {
self.total_bytes_consumed
.fetch_update(Ordering::Relaxed, Ordering::Relaxed, |x| {
Some(x.saturating_sub(byte_size))
})
.unwrap();
if !self.is_unlimited.load(Ordering::Relaxed) {
#[allow(clippy::cast_precision_loss)]
let size = byte_size as f64;
let mut bucket = self.bucket.lock().unwrap();
bucket.unconsume(size);
}
}
/// Consumes several bytes from the speed limiter.
///
/// The consumption happens at the beginning, *before* the speed limit is
/// applied. The returned future is fulfilled after the speed limit is
/// satified.
pub fn consume(&self, byte_size: usize) -> Consume<C, ()> {
let sleep_dur = self.consume_duration(byte_size);
// TODO use Duration::is_zero after `duration_zero` is stable.
let future = if sleep_dur == Duration::from_secs(0) {
None
} else {
Some(self.clock.sleep(sleep_dur))
};
Consume {
future,
result: Some(()),
}
}
/// Wraps a streaming resource with speed limiting. See documentation of
/// [`Resource`] for details.
///
/// If you want to reuse the limiter after calling this function, `clone()`
/// the limiter first.
pub fn limit<R>(self, resource: R) -> Resource<R, C> {
Resource::new(self, resource)
}
/// Returns the number of active clones of this limiter.
///
/// Currently only used for testing, and thus not exported.
#[cfg(test)]
fn shared_count(&self) -> usize {
Arc::strong_count(&self.bucket)
}
}
impl<C: BlockingClock> Limiter<C> {
/// Consumes several bytes, and sleeps the current thread to maintain the
/// speed limit.
///
/// The consumption happens at the beginning, *before* the speed limit is
/// applied. This method blocks the current thread (e.g. using
/// [`std::thread::sleep()`] given a [`StandardClock`]), and *must not* be
/// used in `async` context.
///
/// Prefer using this method instead of
/// [`futures_executor::block_on`]`(limiter.`[`consume`](Limiter::consume())`(size))`.
///
/// [`futures_executor::block_on`]: https://docs.rs/futures-executor/0.3/futures_executor/fn.block_on.html
pub fn blocking_consume(&self, byte_size: usize) {
let sleep_dur = self.consume_duration(byte_size);
self.clock.blocking_sleep(sleep_dur);
}
}
/// The future returned by [`Limiter::consume()`].
#[derive(Debug)]
pub struct Consume<C: Clock, R> {
future: Option<C::Delay>,
result: Option<R>,
}
#[allow(clippy::use_self)] // https://github.com/rust-lang/rust-clippy/issues/3410
impl<C: Clock, R> Consume<C, R> {
/// Replaces the return value of the future.
pub fn map<T, F: FnOnce(R) -> T>(self, f: F) -> Consume<C, T> {
Consume {
future: self.future,
result: self.result.map(f),
}
}
}
impl<C: Clock, R: Unpin> Future for Consume<C, R> {
type Output = R;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.get_mut();
let is_ready = match &mut this.future {
Some(future) => Pin::new(future).poll(cx).is_ready(),
None => true,
};
if is_ready {
if let Some(value) = this.result.take() {
return Poll::Ready(value);
}
}
Poll::Pending
}
}
#[cfg(feature = "fused-future")]
impl<C: Clock, R: Unpin> futures_core::future::FusedFuture for Consume<C, R> {
fn is_terminated(&self) -> bool {
self.result.is_none()
}
}
pin_project! {
/// A speed-limited wrapper of a byte stream.
///
/// The `Resource` can be used to limit speed of
///
/// * [`AsyncRead`](futures_io::AsyncRead)
/// * [`AsyncWrite`](futures_io::AsyncWrite)
///
/// Just like [`Limiter`], the delay is inserted *after* the data are sent
/// or received, in which we know the exact amount of bytes transferred to
/// give an accurate delay. The instantaneous speed can exceed the limit if
/// many read/write tasks are started simultaneously. Therefore, restricting
/// the concurrency is also important to avoid breaching the constraint.
pub struct Resource<R, C: Clock> {
limiter: Limiter<C>,
#[pin]
resource: R,
waiter: Option<Consume<C, ()>>,
}
}
impl<R, C: Clock> Resource<R, C> {
/// Creates a new speed-limited resource.
///
/// To make the resouce have unlimited speed, set the speed of [`Limiter`]
/// to [infinity](`std::f64::INFINITY`).
pub fn new(limiter: Limiter<C>, resource: R) -> Self {
Self {
limiter,
resource,
waiter: None,
}
}
/// Unwraps this value, returns the underlying resource.
pub fn into_inner(self) -> R {
self.resource
}
/// Gets a reference to the underlying resource.
///
/// It is inadvisable to directly operate the underlying resource.
pub fn get_ref(&self) -> &R {
&self.resource
}
/// Gets a mutable reference to the underlying resource.
///
/// It is inadvisable to directly operate the underlying resource.
pub fn get_mut(&mut self) -> &mut R {
&mut self.resource
}
/// Gets a pinned reference to the underlying resource.
///
/// It is inadvisable to directly operate the underlying resource.
pub fn get_pin_ref(self: Pin<&Self>) -> Pin<&R> {
self.project_ref().resource
}
/// Gets a pinned mutable reference to the underlying resource.
///
/// It is inadvisable to directly operate the underlying resource.
pub fn get_pin_mut(self: Pin<&mut Self>) -> Pin<&mut R> {
self.project().resource
}
}
impl<R, C: Clock> Resource<R, C> {
/// Wraps a poll function with a delay after it.
///
/// This method calls the given `poll` function until it is fulfilled. After
/// that, the result is saved into this `Resource` instance (therefore
/// different `poll_***` calls should not be interleaving), while returning
/// `Pending` until the limiter has completely consumed the result.
#[allow(dead_code)]
pub(crate) fn poll_limited<T, B>(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
mut buf: B,
length: impl FnOnce(&T, &B) -> usize,
poll: impl FnOnce(Pin<&mut R>, &mut Context<'_>, &mut B) -> Poll<T>,
) -> Poll<T> {
let this = self.project();
if let Some(waiter) = this.waiter {
let res = Pin::new(waiter).poll(cx);
if res.is_pending() {
return Poll::Pending;
}
*this.waiter = None;
}
let res = poll(this.resource, cx, &mut buf);
if let Poll::Ready(obj) = &res {
let len = length(obj, &buf);
if len > 0 {
*this.waiter = Some(this.limiter.consume(len));
}
}
res
}
}
//------------------------------------------------------------------------------
#[cfg(test)]
mod tests_with_manual_clock {
use super::*;
use crate::clock::{Clock, ManualClock, Nanoseconds};
use futures_executor::LocalPool;
use futures_util::task::SpawnExt;
use std::{future::Future, thread::panicking};
/// Part of the `Fixture` which is to be shared with the spawned tasks.
#[derive(Clone)]
struct SharedFixture {
limiter: Limiter<ManualClock>,
}
impl SharedFixture {
fn now(&self) -> u64 {
self.limiter.clock().now().0
}
fn sleep(&self, nanos: u64) -> impl Future<Output = ()> + '_ {
self.limiter.clock().sleep(Duration::from_nanos(nanos))
}
fn consume(&self, bytes: usize) -> impl Future<Output = ()> + '_ {
self.limiter.consume(bytes)
}
fn unconsume(&self, bytes: usize) {
self.limiter.unconsume(bytes);
}
}
/// The test fixture used by all test cases.
struct Fixture {
shared: SharedFixture,
pool: LocalPool,
}
impl Fixture {
fn new() -> Self {
Self {
shared: SharedFixture {
limiter: Limiter::builder(512.0)
.refill(Duration::from_secs(1))
.build(),
},
pool: LocalPool::new(),
}
}
fn spawn<F, G>(&self, f: F)
where
F: FnOnce(SharedFixture) -> G,
G: Future<Output = ()> + Send + 'static,
{
self.pool.spawner().spawn(f(self.shared.clone())).unwrap();
}
fn set_time(&mut self, time: u64) {
self.shared.limiter.clock().set_time(Nanoseconds(time));
self.pool.run_until_stalled();
}
fn set_speed_limit(&self, limit: f64) {
self.shared.limiter.set_speed_limit(limit);
}
fn total_bytes_consumed(&self) -> usize {
self.shared.limiter.total_bytes_consumed()
}
}
impl Drop for Fixture {
fn drop(&mut self) {
if !panicking() {
// the count is 1 only if all spawned futures are finished.
assert_eq!(self.shared.limiter.shared_count(), 1);
}
}
}
#[test]
fn under_limit_single_thread() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
sfx.consume(50).await;
assert_eq!(sfx.now(), 0);
sfx.consume(51).await;
assert_eq!(sfx.now(), 0);
sfx.consume(52).await;
assert_eq!(sfx.now(), 0);
sfx.consume(53).await;
assert_eq!(sfx.now(), 0);
sfx.consume(54).await;
assert_eq!(sfx.now(), 0);
sfx.consume(55).await;
assert_eq!(sfx.now(), 0);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 315);
}
#[test]
fn over_limit_single_thread() {
let mut fx = Fixture::new();
fx.spawn(|sfx| {
async move {
sfx.consume(200).await;
assert_eq!(sfx.now(), 0);
sfx.consume(201).await;
assert_eq!(sfx.now(), 0);
sfx.consume(202).await;
assert_eq!(sfx.now(), 1_177_734_375);
// 1_177_734_375 ns = (200+201+202)/512 seconds
sfx.consume(203).await;
assert_eq!(sfx.now(), 1_177_734_375);
sfx.consume(204).await;
assert_eq!(sfx.now(), 1_177_734_375);
sfx.consume(205).await;
assert_eq!(sfx.now(), 2_373_046_875);
}
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 603);
fx.set_time(1_177_734_374);
assert_eq!(fx.total_bytes_consumed(), 603);
fx.set_time(1_177_734_375);
assert_eq!(fx.total_bytes_consumed(), 1215);
fx.set_time(2_373_046_874);
assert_eq!(fx.total_bytes_consumed(), 1215);
fx.set_time(2_373_046_875);
assert_eq!(fx.total_bytes_consumed(), 1215);
}
#[test]
fn over_limit_multi_thread() {
let mut fx = Fixture::new();
// Due to how LocalPool does scheduling, the first task is always polled
// before the second task. Nevertheless, the second task can still send
// stuff using the timing difference.
fx.spawn(|sfx| async move {
sfx.consume(200).await;
assert_eq!(sfx.now(), 0);
sfx.consume(202).await;
assert_eq!(sfx.now(), 0);
sfx.consume(204).await;
assert_eq!(sfx.now(), 1_183_593_750);
sfx.consume(206).await;
assert_eq!(sfx.now(), 1_183_593_750);
sfx.consume(208).await;
assert_eq!(sfx.now(), 2_384_765_625);
});
fx.spawn(|sfx| async move {
sfx.consume(201).await;
assert_eq!(sfx.now(), 1_576_171_875);
sfx.consume(203).await;
assert_eq!(sfx.now(), 2_781_250_000);
sfx.consume(205).await;
assert_eq!(sfx.now(), 2_781_250_000);
sfx.consume(207).await;
assert_eq!(sfx.now(), 2_781_250_000);
sfx.consume(209).await;
assert_eq!(sfx.now(), 3_994_140_625);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 807);
fx.set_time(1_183_593_749);
assert_eq!(fx.total_bytes_consumed(), 807);
fx.set_time(1_183_593_750);
assert_eq!(fx.total_bytes_consumed(), 1221);
fx.set_time(1_576_171_874);
assert_eq!(fx.total_bytes_consumed(), 1221);
fx.set_time(1_576_171_875);
assert_eq!(fx.total_bytes_consumed(), 1424);
fx.set_time(2_384_765_624);
assert_eq!(fx.total_bytes_consumed(), 1424);
fx.set_time(2_384_765_625);
assert_eq!(fx.total_bytes_consumed(), 1424);
fx.set_time(2_781_249_999);
assert_eq!(fx.total_bytes_consumed(), 1424);
fx.set_time(2_781_250_000);
assert_eq!(fx.total_bytes_consumed(), 2045);
fx.set_time(3_994_140_624);
assert_eq!(fx.total_bytes_consumed(), 2045);
fx.set_time(3_994_140_625);
assert_eq!(fx.total_bytes_consumed(), 2045);
}
#[test]
fn over_limit_multi_thread_2() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
sfx.consume(300).await;
assert_eq!(sfx.now(), 0);
sfx.consume(301).await;
assert_eq!(sfx.now(), 1_173_828_125);
sfx.consume(302).await;
assert_eq!(sfx.now(), 1_173_828_125);
sfx.consume(303).await;
assert_eq!(sfx.now(), 2_550_781_250);
sfx.consume(304).await;
assert_eq!(sfx.now(), 2_550_781_250);
});
fx.spawn(|sfx| async move {
sfx.consume(100).await;
assert_eq!(sfx.now(), 1_369_140_625);
sfx.consume(101).await;
assert_eq!(sfx.now(), 2_748_046_875);
sfx.consume(102).await;
assert_eq!(sfx.now(), 2_748_046_875);
sfx.consume(103).await;
assert_eq!(sfx.now(), 2_748_046_875);
sfx.consume(104).await;
assert_eq!(sfx.now(), 3_945_312_500);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 701);
fx.set_time(1_173_828_125);
assert_eq!(fx.total_bytes_consumed(), 1306);
fx.set_time(1_369_140_625);
assert_eq!(fx.total_bytes_consumed(), 1407);
fx.set_time(2_550_781_250);
assert_eq!(fx.total_bytes_consumed(), 1711);
fx.set_time(2_748_046_875);
assert_eq!(fx.total_bytes_consumed(), 2020);
fx.set_time(3_945_312_500);
assert_eq!(fx.total_bytes_consumed(), 2020);
}
#[test]
fn over_limit_multi_thread_yielded() {
let mut fx = Fixture::new();
// we're adding 1ns sleeps between each consume() to act as yield points,
// so the consume() are evenly distributed, and can take advantage of
// single bursting.
fx.spawn(|sfx| async move {
sfx.consume(300).await;
assert_eq!(sfx.now(), 0);
sfx.sleep(1).await;
sfx.consume(301).await;
assert_eq!(sfx.now(), 1_369_140_625);
sfx.sleep(1).await;
sfx.consume(302).await;
assert_eq!(sfx.now(), 1_369_140_626);
sfx.sleep(1).await;
sfx.consume(303).await;
assert_eq!(sfx.now(), 2_748_046_875);
sfx.sleep(1).await;
sfx.consume(304).await;
assert_eq!(sfx.now(), 2_748_046_876);
});
fx.spawn(|sfx| async move {
sfx.consume(100).await;
assert_eq!(sfx.now(), 0);
sfx.sleep(1).await;
sfx.consume(101).await;
assert_eq!(sfx.now(), 1_566_406_250);
sfx.sleep(1).await;
sfx.consume(102).await;
assert_eq!(sfx.now(), 2_947_265_625);
sfx.sleep(1).await;
sfx.consume(103).await;
assert_eq!(sfx.now(), 2_947_265_626);
sfx.sleep(1).await;
sfx.consume(104).await;
assert_eq!(sfx.now(), 2_947_265_627);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 400);
fx.set_time(1);
assert_eq!(fx.total_bytes_consumed(), 802);
fx.set_time(1_369_140_625);
assert_eq!(fx.total_bytes_consumed(), 802);
fx.set_time(1_369_140_626);
assert_eq!(fx.total_bytes_consumed(), 1104);
fx.set_time(1_566_406_250);
assert_eq!(fx.total_bytes_consumed(), 1407);
fx.set_time(1_566_406_251);
assert_eq!(fx.total_bytes_consumed(), 1509);
fx.set_time(2_748_046_875);
assert_eq!(fx.total_bytes_consumed(), 1509);
fx.set_time(2_748_046_876);
assert_eq!(fx.total_bytes_consumed(), 1813);
fx.set_time(2_947_265_625);
assert_eq!(fx.total_bytes_consumed(), 1813);
fx.set_time(2_947_265_626);
assert_eq!(fx.total_bytes_consumed(), 1916);
fx.set_time(2_947_265_627);
assert_eq!(fx.total_bytes_consumed(), 2020);
}
#[test]
fn unconsume() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
sfx.consume(200).await;
assert_eq!(sfx.now(), 0);
sfx.consume(201).await;
assert_eq!(sfx.now(), 0);
sfx.unconsume(200);
sfx.consume(202).await;
assert_eq!(sfx.now(), 0);
sfx.consume(200).await;
assert_eq!(sfx.now(), 1_177_734_375);
sfx.consume(203).await;
assert_eq!(sfx.now(), 1_177_734_375);
sfx.consume(204).await;
assert_eq!(sfx.now(), 1_177_734_375);
sfx.consume(205).await;
assert_eq!(sfx.now(), 2_373_046_875);
sfx.unconsume(2000);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 603);
fx.set_time(1_177_734_374);
assert_eq!(fx.total_bytes_consumed(), 603);
fx.set_time(1_177_734_375);
assert_eq!(fx.total_bytes_consumed(), 1215);
fx.set_time(2_373_046_874);
assert_eq!(fx.total_bytes_consumed(), 1215);
fx.set_time(2_373_046_875);
assert_eq!(fx.total_bytes_consumed(), 0);
}
/// Ensures the speed limiter won't forget to enforce until a long pause
/// i.e. we're observing the _maximum_ speed, not the _average_ speed.
#[test]
fn hiatus() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
sfx.consume(400).await;
assert_eq!(sfx.now(), 0);
sfx.consume(401).await;
assert_eq!(sfx.now(), 1_564_453_125);
sfx.sleep(10_000_000_000).await;
assert_eq!(sfx.now(), 11_564_453_125);
sfx.consume(402).await;
assert_eq!(sfx.now(), 11_564_453_125);
sfx.consume(403).await;
assert_eq!(sfx.now(), 13_136_718_750);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 801);
fx.set_time(1_564_453_125);
assert_eq!(fx.total_bytes_consumed(), 801);
fx.set_time(11_564_453_125);
assert_eq!(fx.total_bytes_consumed(), 1606);
fx.set_time(13_136_718_750);
assert_eq!(fx.total_bytes_consumed(), 1606);
}
// Ensures we could still send something much higher than the speed limit
#[test]
fn burst() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
sfx.consume(5000).await;
assert_eq!(sfx.now(), 9_765_625_000);
sfx.consume(5001).await;
assert_eq!(sfx.now(), 19_533_203_125);
sfx.consume(5002).await;
assert_eq!(sfx.now(), 29_302_734_375);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 5000);
fx.set_time(9_765_625_000);
assert_eq!(fx.total_bytes_consumed(), 10001);
fx.set_time(19_533_203_125);
assert_eq!(fx.total_bytes_consumed(), 15003);
fx.set_time(29_302_734_375);
assert_eq!(fx.total_bytes_consumed(), 15003);
}
#[test]
fn change_speed_limit() {
let mut fx = Fixture::new();
// we try to send 5120 bytes at granularity of 256 bytes each.
fx.spawn(|sfx| async move {
for _ in 0..20 {
sfx.consume(256).await;
}
});
// at first, we will send 512 B/s.
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 512);
fx.set_time(500_000_000);
assert_eq!(fx.total_bytes_consumed(), 512);
fx.set_time(1_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1024);
fx.set_time(1_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 1024);
// decrease the speed to 256 B/s
fx.set_speed_limit(256.0);
fx.set_time(1_500_000_001);
assert_eq!(fx.total_bytes_consumed(), 1024);
fx.set_time(2_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1280);
fx.set_time(2_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 1280);
fx.set_time(3_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1280);
fx.set_time(3_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 1280);
fx.set_time(4_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1536);
fx.set_time(4_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 1536);
// increase the speed to 1024 B/s
fx.set_speed_limit(1024.0);
fx.set_time(4_500_000_001);
assert_eq!(fx.total_bytes_consumed(), 1536);
fx.set_time(5_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 2560);
fx.set_time(5_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 2560);
fx.set_time(6_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 3584);
fx.set_time(6_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 3584);
fx.set_time(7_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 4608);
fx.set_time(7_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 4608);
fx.set_time(8_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 5120);
}
/// Ensures lots of small takes won't prevent scheduling of a large take.
#[test]
fn thousand_cuts() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
for _ in 0..64 {
sfx.consume(16).await;
}
});
fx.spawn(|sfx| async move {
sfx.consume(555).await;
assert_eq!(sfx.now(), 2_083_984_375);
sfx.consume(556).await;
assert_eq!(sfx.now(), 3_201_171_875);
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 1067);
fx.set_time(1_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1083);
fx.set_time(2_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1083);
fx.set_time(2_083_984_375);
assert_eq!(fx.total_bytes_consumed(), 1639);
fx.set_time(3_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 2055);
fx.set_time(3_201_171_875);
assert_eq!(fx.total_bytes_consumed(), 2055);
fx.set_time(4_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 2055);
fx.set_time(4_169_921_875);
assert_eq!(fx.total_bytes_consumed(), 2135);
}
#[test]
fn set_infinite_speed_limit() {
let mut fx = Fixture::new();
fx.spawn(|sfx| async move {
for _ in 0..1000 {
sfx.consume(512).await;
}
sfx.sleep(1).await;
for _ in 0..1000 {
sfx.consume(512).await;
}
sfx.sleep(1).await;
sfx.consume(512).await;
sfx.consume(512).await;
});
fx.set_time(0);
assert_eq!(fx.total_bytes_consumed(), 512);
fx.set_time(1_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 1024);
// change speed limit to infinity...
fx.set_speed_limit(std::f64::INFINITY);
// should not affect tasks still waiting
fx.set_time(1_500_000_000);
assert_eq!(fx.total_bytes_consumed(), 1024);
// but all future consumptions will be unlimited.
fx.set_time(2_000_000_000);
assert_eq!(fx.total_bytes_consumed(), 512_000);
// should act normal for keeping speed limit at infinity.
fx.set_speed_limit(std::f64::INFINITY);
fx.set_time(2_000_000_001);
assert_eq!(fx.total_bytes_consumed(), 1_024_000);
// reducing speed limit to normal.
fx.set_speed_limit(512.0);
fx.set_time(2_000_000_002);
assert_eq!(fx.total_bytes_consumed(), 1_024_512);
fx.set_time(3_000_000_002);
assert_eq!(fx.total_bytes_consumed(), 1_025_024);
fx.set_time(4_000_000_002);
assert_eq!(fx.total_bytes_consumed(), 1_025_024);
}
}
#[cfg(test)]
#[cfg(feature = "standard-clock")]
mod tests_with_standard_clock {
use super::*;
use futures_executor::LocalPool;
use futures_util::{future::join_all, task::SpawnExt};
use rand::{thread_rng, Rng};
use std::time::Instant;
// This test case is ported from RocksDB.
#[test]
fn rate() {
eprintln!("tests_with_standard_clock::rate() will run for 20 seconds, please be patient");
let mut pool = LocalPool::new();
let sp = pool.spawner();
for &i in &[1, 2, 4, 8, 16] {
let target = i * 10_240;
let limiter = <Limiter>::new(target as f64);
for &speed_limit in &[target, target * 2] {
limiter.reset_statistics();
limiter.set_speed_limit(speed_limit as f64);
let start = Instant::now();
let handles = (0..i).map(|_| {
let limiter = limiter.clone();
sp.spawn_with_handle(async move {
// tests for 2 seconds.
let until = Instant::now() + Duration::from_secs(2);
while Instant::now() < until {
let size = thread_rng().gen_range(1..=target / 10);
limiter.consume(size).await;
}
})
.unwrap()
});
pool.run_until(join_all(handles));
assert_eq!(limiter.shared_count(), 1);
let elapsed = start.elapsed();
let speed = limiter.total_bytes_consumed() as f64 / elapsed.as_secs_f64();
let diff_ratio = speed / speed_limit as f64;
eprintln!(
"rate: {} threads, expected speed {} B/s, actual speed {:.0} B/s, elapsed {:?}",
i, speed_limit, speed, elapsed
);
assert!((0.80..=1.25).contains(&diff_ratio));
assert!(elapsed <= Duration::from_secs(4));
}
}
}
#[test]
fn block() {
eprintln!("tests_with_standard_clock::block() will run for 20 seconds, please be patient");
for &i in &[1, 2, 4, 8, 16] {
let target = i * 10_240;
let limiter = <Limiter>::new(target as f64);
for &speed_limit in &[target, target * 2] {
limiter.reset_statistics();
limiter.set_speed_limit(speed_limit as f64);
let start = Instant::now();
let handles = (0..i)
.map(|_| {
let limiter = limiter.clone();
std::thread::spawn(move || {
// tests for 2 seconds.
let until = Instant::now() + Duration::from_secs(2);
while Instant::now() < until {
let size = thread_rng().gen_range(1..=target / 10);
limiter.blocking_consume(size);
}
})
})
.collect::<Vec<_>>();
for jh in handles {
jh.join().unwrap();
}
assert_eq!(limiter.shared_count(), 1);
let elapsed = start.elapsed();
let speed = limiter.total_bytes_consumed() as f64 / elapsed.as_secs_f64();
let diff_ratio = speed / speed_limit as f64;
eprintln!(
"block: {} threads, expected speed {} B/s, actual speed {:.0} B/s, elapsed {:?}",
i, speed_limit, speed, elapsed
);
assert!((0.80..=1.25).contains(&diff_ratio));
assert!(elapsed <= Duration::from_secs(4));
}
}
}
}