1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
//! RDMA high-level abstraction, providing several useful APIs.
//!
//! Async-rdma is a framework for writing asynchronous rdma applications with the Rust
//! programing language. At a high level, it provides a few major components:
//!
//! * Tools for establishing connections with rdma endpoints such as `RdmaBuilder`.
//!
//! * High-level APIs for data transmission between endpoints including `read`,
//! `write`, `send`, `receive`.
//!
//! * High-level APIs for rdma memory region management including `alloc_local_mr`,
//! `request_remote_mr`, `send_mr`, `receive_local_mr`, `receive_remote_mr`.
//!
//! * A framework including `agent` and `event_listener` working behind APIs for memory
//! region management and executing rdma requests such as `post_send` and `poll`.
//!
//! #### Example
//! A simple example: client request a remote memory region and put data into this remote
//! memory region by rdma `write`.
//! And finally client `send_mr` to make server aware of this memory region.
//! Server `receive_local_mr`, and then get data from this mr.
//!
//! ```
//! use async_rdma::{Rdma, RdmaListener};
//! use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
//! use portpicker::pick_unused_port;
//!
//! struct Data(String);
//!
//! async fn client(addr: SocketAddrV4) -> io::Result<()> {
//! let rdma = Rdma::connect(addr, 1, 1, 512).await?;
//! let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
//! let rmr = Arc::new(rdma.request_remote_mr(Layout::new::<Data>()).await?);
//! // then send this mr to server to make server aware of this mr.
//! unsafe { *(lmr.as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
//! rdma.write(&lmr, &rmr).await?;
//! // send the content of lmr to server
//! rdma.send_mr(rmr.clone()).await?;
//! Ok(())
//! }
//!
//! #[tokio::main]
//! async fn server(addr: SocketAddrV4) -> io::Result<()> {
//! let rdma_listener = RdmaListener::bind(addr).await?;
//! let rdma = rdma_listener.accept(1, 1, 512).await?;
//! let lmr = rdma.receive_local_mr().await?;
//! // print the content of lmr, which was `write` by client
//! unsafe { println!("{}", &*(*(lmr.as_ptr() as *const Data)).0) };
//! Ok(())
//! }
//! #[tokio::main]
//! async fn main() {
//! let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
//! std::thread::spawn(move || server(addr));
//! tokio::time::sleep(Duration::new(1, 0)).await;
//! client(addr).await.map_err(|err| println!("{}", err)).unwrap();
//! }
//! ```
//!
//!
#![deny(
// The following are allowed by default lints according to
// https://doc.rust-lang.org/rustc/lints/listing/allowed-by-default.html
anonymous_parameters,
bare_trait_objects,
// box_pointers, // use box pointer to allocate on heap
// elided_lifetimes_in_paths, // allow anonymous lifetime
missing_copy_implementations,
missing_debug_implementations,
missing_docs, // TODO: add documents
single_use_lifetimes, // TODO: fix lifetime names only used once
trivial_casts, // TODO: remove trivial casts in code
trivial_numeric_casts,
// unreachable_pub, allow clippy::redundant_pub_crate lint instead
// unsafe_code,
unstable_features,
unused_extern_crates,
unused_import_braces,
unused_qualifications,
unused_results,
variant_size_differences,
warnings, // treat all wanings as errors
clippy::all,
clippy::restriction,
clippy::pedantic,
// clippy::nursery, // It's still under development
clippy::cargo,
unreachable_pub,
)]
#![allow(
// Some explicitly allowed Clippy lints, must have clear reason to allow
clippy::blanket_clippy_restriction_lints, // allow clippy::restriction
clippy::implicit_return, // actually omitting the return keyword is idiomatic Rust code
clippy::module_name_repetitions, // repeation of module name in a struct name is not big deal
clippy::multiple_crate_versions, // multi-version dependency crates is not able to fix
clippy::missing_errors_doc, // TODO: add error docs
clippy::missing_panics_doc, // TODO: add panic docs
clippy::panic_in_result_fn,
clippy::shadow_same, // Not too much bad
clippy::shadow_reuse, // Not too much bad
clippy::exhaustive_enums,
clippy::exhaustive_structs,
)]
/// The agent that handles async events in the background
mod agent;
/// The completion queue that handles the completion event
mod completion_queue;
/// The rmda device context
mod context;
/// The event channel that notifies the completion or error of a request
mod event_channel;
/// The driver to poll the completion queue
mod event_listener;
/// Gid for device
mod gid;
/// id utils
mod id;
/// Memory region abstraction
mod memory_region;
/// Memory window abstraction
mod memory_window;
/// Memory Region allocator
mod mr_allocator;
/// Protection Domain
mod protection_domain;
/// Queue Pair
mod queue_pair;
/// Work Request wrapper
mod work_request;
use agent::Agent;
use clippy_utilities::Cast;
use context::Context;
use enumflags2::{bitflags, BitFlags};
use event_listener::EventListener;
use mr_allocator::MRAllocator;
use protection_domain::ProtectionDomain;
use queue_pair::{QueuePair, QueuePairEndpoint};
use rdma_sys::ibv_access_flags;
use std::{alloc::Layout, any::Any, fmt::Debug, io, sync::Arc};
use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
net::{TcpListener, TcpStream, ToSocketAddrs},
};
use tracing::debug;
pub use memory_region::{LocalMemoryRegion, RemoteMemoryRegion};
#[macro_use]
extern crate lazy_static;
/// A wrapper for ibv_access_flag, hide the ibv binding types
#[bitflags]
#[repr(u64)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum AccessFlag {
/// local write permission
LocalWrite,
/// remote write permission
RemoteWrite,
/// remote read permission
RemoteRead,
/// remote atomic operation permission
RemoteAtomic,
/// enable memory window binding
MwBind,
/// use byte offset from beginning of MR to access this MR, instead of a pointer address
ZeroBased,
/// create an on-demand paging MR
OnDemand,
/// huge pages are guaranteed to be used for this MR, only used with `OnDemand`
HugeTlb,
/// allow system to reorder accesses to the MR to improve performance
RelaxOrder,
}
/// The builder for the `Rdma`, it follows the builder pattern.
pub struct RdmaBuilder {
/// Rdma device name
dev_name: Option<String>,
/// Access flag
access: ibv_access_flags,
/// Complete queue size
cq_size: u32,
/// Gid index
gid_index: usize,
/// Device port number
port_num: u8,
}
impl RdmaBuilder {
/// Create a default builder
/// The default settings are:
/// dev name: None
/// access right: `LocalWrite` | `RemoteRead` | `RemoteWrite` | `RemoteAtomic`
/// complete queue size: 16
/// port number: 1
/// gid index: 0
///
/// Note: We highly recommend setting the port number and the gid index.
#[must_use]
#[inline]
pub fn new() -> Self {
Self::default()
}
/// Create a `Rdma` from this builder
#[inline]
pub fn build(&self) -> io::Result<Rdma> {
Rdma::new(
self.dev_name.as_deref(),
self.access,
self.cq_size,
self.port_num,
self.gid_index,
)
}
/// Set device name
#[inline]
#[must_use]
pub fn set_dev(mut self, dev: &str) -> Self {
self.dev_name = Some(dev.to_owned());
self
}
/// Set the complete queue size
#[inline]
#[must_use]
pub fn set_cq_size(mut self, cq_size: u32) -> Self {
self.cq_size = cq_size;
self
}
/// Set the gid index
#[inline]
#[must_use]
pub fn set_gid_index(mut self, gid_index: usize) -> Self {
self.gid_index = gid_index;
self
}
/// Set the port number
#[inline]
#[must_use]
pub fn set_port_num(mut self, port_num: u8) -> Self {
self.port_num = port_num;
self
}
/// Set the access right
#[inline]
#[must_use]
pub fn set_access(mut self, flag: BitFlags<AccessFlag>) -> Self {
self.access = ibv_access_flags(0);
if flag.contains(AccessFlag::LocalWrite) {
self.access |= ibv_access_flags::IBV_ACCESS_LOCAL_WRITE;
}
if flag.contains(AccessFlag::RemoteWrite) {
self.access |= ibv_access_flags::IBV_ACCESS_REMOTE_WRITE;
}
if flag.contains(AccessFlag::RemoteRead) {
self.access |= ibv_access_flags::IBV_ACCESS_REMOTE_READ;
}
if flag.contains(AccessFlag::RemoteAtomic) {
self.access |= ibv_access_flags::IBV_ACCESS_REMOTE_ATOMIC;
}
if flag.contains(AccessFlag::MwBind) {
self.access |= ibv_access_flags::IBV_ACCESS_MW_BIND;
}
if flag.contains(AccessFlag::ZeroBased) {
self.access |= ibv_access_flags::IBV_ACCESS_ZERO_BASED;
}
if flag.contains(AccessFlag::OnDemand) {
self.access |= ibv_access_flags::IBV_ACCESS_ON_DEMAND;
}
if flag.contains(AccessFlag::HugeTlb) {
self.access |= ibv_access_flags::IBV_ACCESS_HUGETLB;
}
if flag.contains(AccessFlag::RelaxOrder) {
self.access |= ibv_access_flags::IBV_ACCESS_RELAXED_ORDERING;
}
self
}
}
impl Debug for RdmaBuilder {
#[inline]
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("RdmaBuilder")
.field("dev_name", &self.dev_name)
.field("cq_size", &self.cq_size)
.finish()
}
}
impl Default for RdmaBuilder {
#[inline]
fn default() -> Self {
Self {
dev_name: None,
access: ibv_access_flags::IBV_ACCESS_LOCAL_WRITE
| ibv_access_flags::IBV_ACCESS_REMOTE_WRITE
| ibv_access_flags::IBV_ACCESS_REMOTE_READ
| ibv_access_flags::IBV_ACCESS_REMOTE_ATOMIC,
cq_size: 16,
gid_index: 0,
port_num: 1,
}
}
}
/// Rdma handler, the only interface that the users deal with rdma
#[derive(Debug)]
pub struct Rdma {
/// device context
#[allow(dead_code)]
ctx: Arc<Context>,
/// protection domain
#[allow(dead_code)]
pd: Arc<ProtectionDomain>,
/// Memory region allocator
allocator: Arc<MRAllocator>,
/// Queue pair
qp: Arc<QueuePair>,
/// Background agent
agent: Option<Arc<Agent>>,
}
impl Rdma {
/// create a new `Rdma` instance
fn new(
dev_name: Option<&str>,
access: ibv_access_flags,
cq_size: u32,
port_num: u8,
gid_index: usize,
) -> io::Result<Self> {
let ctx = Arc::new(Context::open(dev_name, port_num, gid_index)?);
let ec = ctx.create_event_channel()?;
let cq = Arc::new(ctx.create_completion_queue(cq_size, ec)?);
let event_listener = EventListener::new(cq);
let pd = Arc::new(ctx.create_protection_domain()?);
let allocator = Arc::new(MRAllocator::new(Arc::<ProtectionDomain>::clone(&pd))?);
let qp = Arc::new(
pd.create_queue_pair_builder()
.set_event_listener(event_listener)
.set_port_num(port_num)
.set_gid_index(gid_index)
.build()?,
);
qp.modify_to_init(access, port_num)?;
Ok(Self {
ctx,
pd,
qp,
agent: None,
allocator,
})
}
/// get the queue pair endpoint information
fn endpoint(&self) -> QueuePairEndpoint {
self.qp.endpoint()
}
/// to hand shake the qp so that it works
fn qp_handshake(&mut self, remote: QueuePairEndpoint) -> io::Result<()> {
self.qp.modify_to_rtr(remote, 0, 1, 0x12)?;
debug!("rtr");
self.qp.modify_to_rts(0x12, 6, 7, 0, 1)?;
debug!("rts");
Ok(())
}
/// Send the content in the `lm`
///
/// Used with `receive`.
/// Application scenario such as: client put data into a local mr and `send` to server.
/// Server `receive` the mr sent by client and process data in it.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
/// // put data into lmr
/// unsafe { *(lmr.as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
/// // send the content of lmr to server
/// rdma.send(&lmr).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// // receive the data sent by client and put it into an mr
/// let lmr = rdma.receive().await?;
/// // read data from mr
/// unsafe { assert_eq!("hello world".to_string(), *(*(lmr.as_ptr() as *const Data)).0) };
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn send(&self, lm: &LocalMemoryRegion) -> io::Result<()> {
self.agent
.as_ref()
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "Agent is not ready"))?
.send_data(lm)
.await
}
/// Receive the content and stored in the returned memory region
///
/// Used with `send`.
/// Application scenario such as: client put data into a local mr and `send` to server.
/// Server `receive` the mr sent by client and process data in it.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
/// // put data into lmr
/// unsafe { *(lmr.as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
/// // send the content of lmr to server
/// rdma.send(&lmr).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// // receive the data sent by client and put it into an mr
/// let lmr = rdma.receive().await?;
/// // read data from mr
/// unsafe { assert_eq!("hello world".to_string(), *(*(lmr.as_ptr() as *const Data)).0) };
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn receive(&self) -> io::Result<LocalMemoryRegion> {
self.agent
.as_ref()
.ok_or_else(|| io::Error::new(io::ErrorKind::Other, "Agent is not ready"))?
.receive_data()
.await
}
/// Read content in the `rm` and store the content in the `lm`
///
/// Application scenario such as: client put data into a local mr and `send_mr` to server.
/// Server get a remote mr by `receive_remote_mr`, and then get data from this rmr by rdma `read`.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// let mut lmr = Arc::new(rdma.alloc_local_mr(Layout::new::<Data>())?);
/// // put data into lmr
/// unsafe { *(Arc::get_mut(&mut lmr).unwrap().as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
/// // send the content of lmr to server
/// rdma.send_mr(lmr.clone()).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
/// // receive the data sent by client and put it into an mr
/// let rmr = rdma.receive_remote_mr().await?;
/// // `read` data from rmr to lmr
/// rdma.read(&mut lmr, &rmr).await?;
/// // print the content of lmr, which was get from rmr by rdma `read`
/// unsafe { assert_eq!("hello world".to_string(), *(*(lmr.as_ptr() as *const Data)).0) };
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn read(
&self,
lm: &mut LocalMemoryRegion,
rm: &RemoteMemoryRegion,
) -> io::Result<()> {
self.qp.read(lm, rm).await
}
/// Write content in the `lm` to `rm`
///
/// Application scenario such as: client request a remote mr through `request_remote_mr`,
/// and then put data into this rmr by rdma `write`. After all client `send_mr` to make
/// server aware of this mr.
/// After client `send_mr`, server `receive_local_mr`, and then get data from this mr.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
/// let rmr = Arc::new(rdma.request_remote_mr(Layout::new::<Data>()).await?);
/// // then send this mr to server to make server aware of this mr.
/// unsafe { *(lmr.as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
/// rdma.write(&lmr, &rmr).await?;
/// // send the content of lmr to server
/// rdma.send_mr(rmr.clone()).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// let lmr = rdma.receive_local_mr().await?;
/// // print the content of lmr, which was `write` by client
/// unsafe { assert_eq!("hello world".to_string(), *(*(lmr.as_ptr() as *const Data)).0) };
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn write(&self, lm: &LocalMemoryRegion, rm: &RemoteMemoryRegion) -> io::Result<()> {
self.qp.write(lm, rm).await
}
/// Connect the remote endpoint and build rmda queue pair by TCP connection
///
/// `gid_index`: 0:ipv6, 1:ipv4
/// `max_message_length`: max length of msg used in `send`&`receive`.
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// println!("connected");
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn connect<A: ToSocketAddrs>(
addr: A,
port_num: u8,
gid_index: usize,
max_message_length: usize,
) -> io::Result<Self> {
let mut rdma = RdmaBuilder::default()
.set_port_num(port_num)
.set_gid_index(gid_index)
.build()?;
let mut stream = TcpStream::connect(addr).await?;
let mut endpoint = bincode::serialize(&rdma.endpoint()).map_err(|e| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!("failed to serailize the endpoint, {:?}", e),
)
})?;
stream.write_all(&endpoint).await?;
// the byte number is not important, as read_exact will fill the buffer
let _ = stream.read_exact(endpoint.as_mut()).await?;
let remote: QueuePairEndpoint = bincode::deserialize(&endpoint).map_err(|e| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!("failed to deserailize the endpoint, {:?}", e),
)
})?;
rdma.qp_handshake(remote)?;
let agent = Arc::new(Agent::new(
Arc::<QueuePair>::clone(&rdma.qp),
Arc::<MRAllocator>::clone(&rdma.allocator),
max_message_length,
)?);
rdma.agent = Some(agent);
Ok(rdma)
}
/// Allocate a local memory region
///
/// You can use local mr to `send`&`receive` or `read`&`write` with a remote mr.
/// The parameter `layout` can be obtained by `Layout::new::<Data>()`.
/// You can learn the way to write or read data in mr in the following example.
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
/// // put data into lmr
/// unsafe { *(lmr.as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
/// // send the content of lmr to server
/// rdma.send(&lmr).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// // receive the data sent by client and put it into an mr
/// let lmr = rdma.receive().await?;
/// // read data from mr
/// unsafe { assert_eq!("hello world".to_string(), *(*(lmr.as_ptr() as *const Data)).0) };
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub fn alloc_local_mr(&self, layout: Layout) -> io::Result<LocalMemoryRegion> {
self.allocator.alloc(&layout)
}
/// Request a remote memory region
///
/// Used with `send_mr`, `receive_local_mr`, `read` and `write`.
/// Application scenario such as: client uses `request_remote_mr` to apply for
/// a remote mr from server, and makes server aware of this mr by `send_mr` to server.
/// For server, this mr is a local mr, which can be received through `receive_local_mr`.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// // request a mr located in server.
/// let rmr = Arc::new(rdma.request_remote_mr(Layout::new::<Data>()).await?);
/// // do something with rmr like `write` data into it.
/// // then send this mr to server to make server aware of this mr.
/// rdma.send_mr(rmr.clone()).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// // receive the mr which was requested by client.
/// let lmr = rdma.receive_local_mr().await?;
/// // do something with lmr like getting data from it.
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn request_remote_mr(&self, layout: Layout) -> io::Result<RemoteMemoryRegion> {
if let Some(ref agent) = self.agent {
agent.request_remote_mr(layout).await
} else {
Err(io::Error::new(
io::ErrorKind::Other,
"Agent is not ready, please wait a while",
))
}
}
/// Send a memory region to remote, either local mr or remote mr
///
/// Used with `receive_local_mr` or `receive_remote_mr`
/// Application scenario such as: client uses `request_remote_mr` to apply for
/// a remote mr from server, and makes server aware of this mr by `send_mr` to server.
/// For server, this mr is a local mr, which can be received through `receive_local_mr`.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// // request a mr located in server.
/// let rmr = Arc::new(rdma.request_remote_mr(Layout::new::<Data>()).await?);
/// // do something with rmr like `write` data into it.
/// // then send this mr to server to make server aware of this mr.
/// rdma.send_mr(rmr.clone()).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// // receive the mr which was requested by client.
/// let lmr = rdma.receive_local_mr().await?;
/// // do something with lmr like getting data from it.
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn send_mr(&self, mr: Arc<dyn Any + Send + Sync>) -> io::Result<()> {
if let Some(ref agent) = self.agent {
agent.send_mr(mr).await
} else {
Err(io::Error::new(
io::ErrorKind::Other,
"Agent is not ready, please wait a while",
))
}
}
/// Receive a local memory region
///
/// Used with `send_mr`.
/// Application scenario such as: client uses `request_remote_mr` to apply for
/// a remote mr from server, and makes server aware of this mr by `send_mr` to server.
/// For server, this mr is a local mr, which can be received through `receive_local_mr`.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// Application scenario such as: client request a remote mr through `request_remote_mr`,
/// and then put data into this rmr by rdma `write`. After all client `send_mr` to make
/// server aware of this mr.
/// After client `send_mr`, server `receive_local_mr`, and then get data from this mr.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// let mut lmr = rdma.alloc_local_mr(Layout::new::<Data>())?;
/// let rmr = Arc::new(rdma.request_remote_mr(Layout::new::<Data>()).await?);
/// // then send this mr to server to make server aware of this mr.
/// unsafe { *(lmr.as_mut_ptr() as *mut Data) = Data("hello world".to_string()) };
/// rdma.write(&lmr, &rmr).await?;
/// // send the content of lmr to server
/// rdma.send_mr(rmr.clone()).await?;
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// let lmr = rdma.receive_local_mr().await?;
/// // print the content of lmr, which was `write` by client
/// unsafe { assert_eq!("hello world".to_string(), *(*(lmr.as_ptr() as *const Data)).0) };
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main() {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn receive_local_mr(&self) -> io::Result<Arc<LocalMemoryRegion>> {
if let Some(ref agent) = self.agent {
agent.receive_local_mr().await
} else {
Err(io::Error::new(
io::ErrorKind::Other,
"Agent is not ready, please wait a while",
))
}
}
/// Receive a remote memory region
///
/// Used with `send_mr`.
/// Application scenario such as: server alloc a local mr and put data into it and let
/// client know about this mr through `send_mr`. For client, this is a remote mr located
/// in server.Client receive the metadata of this mr by `receive_remote_mr`.
///
/// Application scenario can be seen in `[/example/rpc.rs]`
///
/// # Examples
/// ```
/// use async_rdma::{Rdma, RdmaListener};
/// use std::{alloc::Layout, sync::Arc, io, time::Duration, net::{Ipv4Addr, SocketAddrV4}};
/// use portpicker::pick_unused_port;
///
/// struct Data(String);
///
/// async fn client(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma = Rdma::connect(addr, 1, 1, 512).await?;
/// // receive an mr located in server.
/// let rmr = rdma.receive_remote_mr().await?;
/// // do something with rmr like `read` data from it.
/// Ok(())
/// }
///
/// #[tokio::main]
/// async fn server(addr: SocketAddrV4) -> io::Result<()> {
/// let rdma_listener = RdmaListener::bind(addr).await?;
/// let rdma = rdma_listener.accept(1, 1, 512).await?;
/// let mut lmr = Arc::new(rdma
/// .alloc_local_mr(Layout::new::<Data>())?);
/// // do something with lmr like put data into it.
/// // send this lmr to client
/// rdma.send_mr(lmr.clone()).await?;
/// Ok(())
/// }
/// #[tokio::main]
/// async fn main()
/// {
/// let addr = SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), pick_unused_port().unwrap());
/// std::thread::spawn(move || server(addr));
/// tokio::time::sleep(Duration::new(1, 0)).await;
/// client(addr).await.map_err(|err| println!("{}", err)).unwrap();
/// }
/// ```
#[inline]
pub async fn receive_remote_mr(&self) -> io::Result<RemoteMemoryRegion> {
if let Some(ref agent) = self.agent {
agent.receive_remote_mr().await
} else {
Err(io::Error::new(
io::ErrorKind::Other,
"Agent is not ready, please wait a while",
))
}
}
}
/// Rdma Listener is the wrapper of a `TcpListener`, which is used to
/// build the rdma queue pair.
#[derive(Debug)]
pub struct RdmaListener {
/// Tcp listener to establish the queue pair
tcp_listener: TcpListener,
}
impl RdmaListener {
/// Bind the address and wait for a connection
#[inline]
pub async fn bind<A: ToSocketAddrs>(addr: A) -> io::Result<Self> {
let tcp_listener = TcpListener::bind(addr).await?;
Ok(Self { tcp_listener })
}
/// Wait for a connection from a remote host
#[inline]
pub async fn accept(
&self,
port_num: u8,
gid_index: usize,
max_message_length: usize,
) -> io::Result<Rdma> {
let (mut stream, _) = self.tcp_listener.accept().await?;
let mut rdma = RdmaBuilder::default()
.set_port_num(port_num)
.set_gid_index(gid_index)
.build()?;
let endpoint_size = bincode::serialized_size(&rdma.endpoint()).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("Endpoint serialization failed, {:?}", e),
)
})?;
let mut remote = vec![0_u8; endpoint_size.cast()];
// the byte number is not important, as read_exact will fill the buffer
let _ = stream.read_exact(remote.as_mut()).await?;
let remote: QueuePairEndpoint = bincode::deserialize(&remote).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to deserialize remote endpoint, {:?}", e),
)
})?;
let local = bincode::serialize(&rdma.endpoint()).map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("failed to deserialize remote endpoint, {:?}", e),
)
})?;
stream.write_all(&local).await?;
rdma.qp_handshake(remote)?;
debug!("handshake done");
let agent = Arc::new(Agent::new(
Arc::<QueuePair>::clone(&rdma.qp),
Arc::<MRAllocator>::clone(&rdma.allocator),
max_message_length,
)?);
rdma.agent = Some(agent);
Ok(rdma)
}
}