1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*! Asynchronous PSEC implementation.

[PSEC](https://github.com/hardcore-sushi/PSEC) (Peer-to-peer Secure Ephemeral Communications) is a simplification/adaptation of TLS 1.3 for P2P networks which provides an encrypted and authenticated secure transport layer for ephemeral communications. PSEC ensures deniability, forward secrecy, future secrecy, and optional plaintext length obfuscation. This crate is an implementation of this protocol built with the [tokio] framework.

# Usage
Add this in your `Cargo.toml`:
```toml
[dependencies]
async-psec = "0.3"
```
And then:
```no_run
use rand::rngs::OsRng;
use tokio::net::TcpStream;
use async_psec::{Session, Identity, PsecReader, PsecWriter, PsecError};

#[tokio::main]
async fn main() -> Result<(), PsecError> {
    let identity = Identity::generate(&mut OsRng); //generate a new PSEC identity

    //connect to another PSEC node listening on 10.152.152.10:7530
    let stream = TcpStream::connect("10.152.152.10:7530").await.unwrap();

    let mut psec_session = Session::from(stream); //wrap the TcpStream into a PSEC session
    psec_session.do_handshake(&identity).await?; //perform the PSEC handshake
    
    //encrypt a message, obfuscate its length with padding then send it
    psec_session.encrypt_and_send(b"Hello I'm Alice", true).await?;
    //receive then decrypt a message
    println!("Received: {:?}", psec_session.receive_and_decrypt().await?);
#   Ok(())
}
```

# Split Feature
If you want to split the [`Session`] struct in two parts, you must enable the `split` feature:
```toml
[dependencies]
async-psec = { version = "0.3", feature = ["split"] }
```
This can be useful if you want to send data from one thread/task and receive from another in parallel.
*/

#![warn(missing_docs)]

mod crypto;
use std::{convert::TryInto, fmt::{self, Debug, Display, Formatter}, io::{self, ErrorKind}, net::SocketAddr};
use tokio::{io::{AsyncReadExt, AsyncWriteExt}, net::TcpStream};
#[cfg(feature = "split")]
use tokio::net::tcp::{OwnedReadHalf, OwnedWriteHalf};
use async_trait::async_trait;
use ed25519_dalek::{ed25519::signature::Signature, Keypair, Signer, Verifier, SIGNATURE_LENGTH};
use rand::{RngCore, rngs::OsRng};
use sha2::{Sha384, Digest};
use aes_gcm::{Aes128Gcm, aead::Aead, NewAead, aead::Payload, Nonce};
use crypto::{HandshakeKeys, ApplicationKeys};

const AES_TAG_LEN: usize = 16;
const RANDOM_LEN: usize = 64;
const MESSAGE_LEN_LEN: usize = 4;
type MessageLenType = u32;

const DEFAULT_PADDED_MAX_SIZE: usize = 32768000;
const DEFAULT_MAX_RECV_SIZE: usize = MESSAGE_LEN_LEN + DEFAULT_PADDED_MAX_SIZE + AES_TAG_LEN;

/// The length of a PSEC public key, in bytes.
pub const PUBLIC_KEY_LENGTH: usize = ed25519_dalek::PUBLIC_KEY_LENGTH;

/** A PSEC Identity.

This is just a [curve25519 keypair](Keypair).*/
pub type Identity = Keypair;

///Errors that can be returned by PSEC operations.
#[derive(Debug, PartialEq, Eq)]
pub enum PsecError {
    /// The operation failed because a pipe was closed.
    BrokenPipe,
    /// The connection was reset by the remote peer.
    ConnectionReset,
    /// Authentication error. It often means that the AES GCM tag was invalid during a decryption operation.
    TransmissionCorrupted,
    /// The received buffer was too large and was discarded to prevent DOS attacks.
    BufferTooLarge,
    /// Failed to read the desired amout of bytes.
    UnexpectedEof,
    /// An unknown error occurred while reading or writing to the underlying [`TcpStream`].
    IoError {
        /// The [`ErrorKind`] of the I/O [`Error`](io::Error).
        error_kind: ErrorKind,
    },
    /// The plain text was not properly padded.
    BadPadding,
}

impl Display for PsecError {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            PsecError::BrokenPipe => f.write_str("Broken pipe"),
            PsecError::ConnectionReset => f.write_str("Connection reset"),
            PsecError::TransmissionCorrupted => f.write_str("Transmission corrupted"),
            PsecError::BufferTooLarge => f.write_str("Received buffer is too large"),
            PsecError::UnexpectedEof => f.write_str("Unexpected EOF"),
            PsecError::IoError { error_kind } => f.write_str(&format!("{:?}", error_kind)),
            PsecError::BadPadding => f.write_str("Bad Padding"),
        }
    }
}

fn slice_to_public_key(buff: &[u8]) -> x25519_dalek::PublicKey {
    let array: [u8; PUBLIC_KEY_LENGTH] = buff.try_into().unwrap();
    x25519_dalek::PublicKey::from(array)
}

async fn receive<T: AsyncReadExt + Unpin>(reader: &mut T, buff: &mut [u8]) -> Result<usize, PsecError> {
    match reader.read_exact(buff).await {
        Ok(read) => {
            if read > 0 {
                Ok(read)
            } else {
                Err(PsecError::BrokenPipe)
            }
        }
        Err(e) => {
            match e.kind() {
                ErrorKind::UnexpectedEof => Err(PsecError::UnexpectedEof),
                ErrorKind::ConnectionReset => Err(PsecError::ConnectionReset),
                _ => Err(PsecError::IoError { error_kind: e.kind() })
            }
        }
    }
}

async fn send<T: AsyncWriteExt + Unpin>(writer: &mut T, buff: &[u8]) -> Result<(), PsecError> {
    match writer.write_all(buff).await {
        Ok(_) => Ok(()),
        Err(e) => Err(match e.kind() {
            ErrorKind::BrokenPipe => PsecError::BrokenPipe,
            ErrorKind::ConnectionReset => PsecError::ConnectionReset,
            _ => PsecError::IoError { error_kind: e.kind() }
        })
    }
}

fn pad(plain_text: &[u8], use_padding: bool) -> Vec<u8> {
    let encoded_msg_len = (plain_text.len() as MessageLenType).to_be_bytes();
    let msg_len = plain_text.len()+encoded_msg_len.len();
    let mut output = Vec::from(encoded_msg_len);
    if use_padding {
        let mut len = 1000;
        while len < msg_len {
            len *= 2;
        }
        output.reserve(len);
        output.extend(plain_text);
        output.resize(len, 0);
        OsRng.fill_bytes(&mut output[msg_len..]);
    } else {
        output.extend(plain_text);
    }
    output
}

fn unpad(input: Vec<u8>) -> Result<Vec<u8>, PsecError> {
    if input.len() < 4 {
        Err(PsecError::BadPadding)
    } else {
        let msg_len = MessageLenType::from_be_bytes(input[0..MESSAGE_LEN_LEN].try_into().unwrap()) as usize;
        Ok(Vec::from(&input[MESSAGE_LEN_LEN..MESSAGE_LEN_LEN+msg_len]))
    }
}

fn encrypt(local_cipher: &Aes128Gcm, local_iv: &[u8], local_counter: &mut usize, plain_text: &[u8], use_padding: bool) -> Vec<u8> {
    let padded_msg = pad(plain_text, use_padding);
    let cipher_len = (padded_msg.len() as MessageLenType).to_be_bytes();
    let payload = Payload {
        msg: &padded_msg,
        aad: &cipher_len
    };
    let nonce = crypto::iv_to_nonce(local_iv, local_counter);
    let cipher_text = local_cipher.encrypt(Nonce::from_slice(&nonce), payload).unwrap();
    [&cipher_len, cipher_text.as_slice()].concat()
}

async fn encrypt_and_send<T: AsyncWriteExt + Unpin>(writer: &mut T, local_cipher: &Aes128Gcm, local_iv: &[u8], local_counter: &mut usize, plain_text: &[u8], use_padding: bool) -> Result<(), PsecError> {
    let cipher_text = encrypt(local_cipher, local_iv, local_counter, plain_text, use_padding);
    send(writer, &cipher_text).await
}

async fn receive_and_decrypt<T: AsyncReadExt + Unpin>(reader: &mut T, peer_cipher: &Aes128Gcm, peer_iv: &[u8], peer_counter: &mut usize, max_recv_size: usize) -> Result<Vec<u8>, PsecError> {
    let mut message_len = [0; MESSAGE_LEN_LEN];
    receive(reader, &mut message_len).await?;
    let recv_len = MessageLenType::from_be_bytes(message_len) as usize + AES_TAG_LEN;
    if recv_len <= max_recv_size {
        let mut cipher_text = vec![0; recv_len];
        let mut read = 0;
        while read < recv_len {
            read += receive(reader, &mut cipher_text[read..]).await?;
        }
        let peer_nonce = crypto::iv_to_nonce(peer_iv, peer_counter);
        let payload = Payload {
            msg: &cipher_text,
            aad: &message_len
        };
        match peer_cipher.decrypt(Nonce::from_slice(&peer_nonce), payload) {
            Ok(plain_text) => unpad(plain_text),
            Err(_) => Err(PsecError::TransmissionCorrupted)
        }
    } else {
        Err(PsecError::BufferTooLarge)
    }
}

fn compute_max_recv_size(size: usize, is_raw_size: bool) -> usize {
    if is_raw_size {
        size
    } else {
        let max_not_padded_size = size+MESSAGE_LEN_LEN;
        let mut max_padded_size = 1000;
        while max_padded_size < max_not_padded_size {
            max_padded_size *= 2;
        }
        max_padded_size+AES_TAG_LEN
    }
}

/// Read from a PSEC session.
#[async_trait]
pub trait PsecReader {
    /** Set the maximum size of an acceptable buffer being received.
    
    Any received buffer larger than this value will be discarded and a [`BufferTooLarge`](PsecError::BufferTooLarge) error will be returned. Then, the PSEC session should be closed to prevent any DOS attacks.
    
    If `is_raw_size` is set to `true`, the specified `size` will correspond to the maximum encrypted buffer size, including potential padding. Otherwise, the maximum buffer size will correspond to the length of a message of this size after applying padding and encryption.
    
    The default value is 32 768 020, which allows to receive any messages under 32 768 000 bytes.*/
    fn set_max_recv_size(&mut self, size: usize, is_raw_size: bool);

    /** Read then decrypt from a PSEC session.

    # Panic
    Panics if the PSEC handshake is not finished and successful.*/
    async fn receive_and_decrypt(&mut self) -> Result<Vec<u8>, PsecError>;

    /** Take ownership of the `PsecReader`, read, decrypt, then return back the `PsecReader`. Useful when used with [`tokio::select!`].
    
    # Panic
    Panics if the PSEC handshake is not finished and successful.
    ```no_run
    # use tokio::net::TcpStream;
    # use async_psec::{Session, PsecReader};
    # #[tokio::main]
    # async fn main() {
    #   let stream = TcpStream::connect("10.152.152.10:7530").await.unwrap();
    #   let psec_session = Session::from(stream);
    let receiving = psec_session.into_receive_and_decrypt();
    tokio::pin!(receiving);

    loop {
        tokio::select! {
            result = &mut receiving => {
                let (buffer, psec_session) = result;

                receiving.set(psec_session.into_receive_and_decrypt());
                
                match buffer {
                    Ok(buffer) => println!("Received: {:?}", buffer),
                    Err(e) => println!("Error: {}", e)
                }
            }
            //other select! branches...
        }
    }
    # }
    ```
    */
    async fn into_receive_and_decrypt(self) -> (Result<Vec<u8>, PsecError>, Self);
}

/// Write to a PSEC session.
#[async_trait]
pub trait PsecWriter {
    /** Encrypt then send through a PSEC session.

    `use_padding` specifies whether or not the plain text length should be obfuscated with padding. Enabling padding will use more network bandwidth: all messages below 1KB will be padded to 1KB and then the padded length doubles at each step (2KB, 4KB, 8KB...). When sending a buffer of 17MB, it will padded to 32MB.
    
    # Panic
    Panics if the PSEC handshake is not finished and successful.
    */
    async fn encrypt_and_send(&mut self, plain_text: &[u8], use_padding: bool) -> Result<(), PsecError>;

    /** Encrypt a buffer but return it instead of sending it.
    
    All encrypted buffers must be sent __in the same order__ they have been encrypted otherwise the remote peer won't be able to decrypt them and should close the connection.

    # Panic
    Panics if the PSEC handshake is not finished and successful.
    ```no_run
    # use tokio::net::TcpStream;
    # use async_psec::{Session, PsecWriter, PsecError};
    # #[tokio::main]
    # async fn main() -> Result<(), PsecError> {
    # let stream = TcpStream::connect("10.152.152.10:7530").await.unwrap();
    # let mut psec_session = Session::from(stream);
    let buffer1 = psec_session.encrypt(b"Hello ", false);
    let buffer2 = psec_session.encrypt(b" world!", false);
    psec_session.send(&buffer1).await?;
    psec_session.send(&buffer2).await?;
    # Ok(())
    # }
    ```
    */
    fn encrypt(&mut self, plain_text: &[u8], use_padding: bool) -> Vec<u8>;

    /** Send a previously encrypted buffer.
    
    All encrypted buffers must be sent __in the same order__ they have been encrypted otherwise the remote peer won't be able to decrypt them and should close the connection.*/
    async fn send(&mut self, cipher_text: &[u8]) -> Result<(), PsecError>;
}

/// The read half of a PSEC session. Obtained with [`Session::into_split`].
#[cfg(feature = "split")]
pub struct SessionReadHalf {
    read_half: OwnedReadHalf,
    peer_cipher: Aes128Gcm,
    peer_iv: [u8; crypto::IV_LEN],
    peer_counter: usize,
    max_recv_size: usize,
}

#[cfg(feature = "split")]
impl Debug for SessionReadHalf {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("SessionReadHalf")
            .field("read_half", &self.read_half)
            .field("max_recv_size", &self.max_recv_size)
            .field("peer_counter", &self.peer_counter)
            .field("peer_iv", &hex_encode(&self.peer_iv))
            .finish()
    }
}

#[cfg(feature = "split")]
#[async_trait]
impl PsecReader for SessionReadHalf {
    fn set_max_recv_size(&mut self, size: usize, is_raw_size: bool) {
        self.max_recv_size = compute_max_recv_size(size, is_raw_size)
    }
    async fn receive_and_decrypt(&mut self) -> Result<Vec<u8>, PsecError> {
        receive_and_decrypt(&mut self.read_half, &self.peer_cipher, &self.peer_iv, &mut self.peer_counter, self.max_recv_size).await
    }
    async fn into_receive_and_decrypt(mut self) -> (Result<Vec<u8>, PsecError>, Self) {
        (self.receive_and_decrypt().await, self)
    }
}

#[cfg(feature = "split")]
/// The write half of a PSEC session. Obtained with [`Session::into_split`].
pub struct SessionWriteHalf {
    write_half: OwnedWriteHalf,
    local_cipher: Aes128Gcm,
    local_iv: [u8; crypto::IV_LEN],
    local_counter: usize,
}

#[cfg(feature = "split")]
#[async_trait]
impl PsecWriter for SessionWriteHalf {
    async fn encrypt_and_send(&mut self, plain_text: &[u8], use_padding: bool) -> Result<(), PsecError> {
        encrypt_and_send(&mut self.write_half, &self.local_cipher, &self.local_iv, &mut self.local_counter, plain_text, use_padding).await
    }
    fn encrypt(&mut self, plain_text: &[u8], use_padding: bool) -> Vec<u8> {
        encrypt(&self.local_cipher, &self.local_iv, &mut self.local_counter, plain_text, use_padding)
    }
    async fn send(&mut self, cipher_text: &[u8]) -> Result<(), PsecError> {
        send(&mut self.write_half, cipher_text).await
    }
}

#[cfg(feature = "split")]
impl Debug for SessionWriteHalf {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        f.debug_struct("SessionWriteHalf")
            .field("write_half", &self.write_half)
            .field("local_counter", &self.local_counter)
            .field("local_iv", &hex_encode(&self.local_iv))
            .finish()
    }
}

/// A PSEC connection.
pub struct Session {
    stream: TcpStream,
    local_cipher: Option<Aes128Gcm>,
    local_iv: Option<[u8; crypto::IV_LEN]>,
    local_counter: usize,
    peer_cipher: Option<Aes128Gcm>,
    peer_iv: Option<[u8; crypto::IV_LEN]>,
    peer_counter: usize,
    max_recv_size: usize,
    /** The public key of the remote peer.
    
    It is `None` before the PSEC handshake was performed. After a successful call to [`do_handshake`](Session::do_handshake), the field is `Some`. If the handshake was not successful, the field can be either `Some` or `None` depending on where the handshake failed.
    ```no_run
    # use rand::rngs::OsRng;
    # use tokio::{net::TcpStream, io::Error};
    # use async_psec::{Identity, Session};
    # #[tokio::main]
    # async fn main() -> Result<(), Error> {
    # let identity = Identity::generate(&mut OsRng);
    let stream = TcpStream::connect("10.152.152.10:7530").await?;

    let mut psec_session = Session::from(stream);
    psec_session.do_handshake(&identity).await.unwrap();

    println!("Peer public key: {:?}", psec_session.peer_public_key.unwrap());
    # Ok(())
    # }
    ```*/
    pub peer_public_key: Option<[u8; PUBLIC_KEY_LENGTH]>,
}

impl Session {
    /** Split the `Session` in two parts: a reader and a writer.
    
    Calling this before a successful call to [`do_handshake`](Session::do_handshake) will return `None`.
    ```no_run
    # use std::io::Error;
    # use tokio::net::TcpStream;
    # use async_psec::{Session, PsecReader, PsecWriter};
    # #[tokio::main]
    # async fn main() -> Result<(), Error> {
    # let stream = TcpStream::connect("10.152.152.10:7530").await?;
    # let psec_session = Session::from(stream);
    let (mut session_read, mut session_write) = psec_session.into_split().unwrap();

    tokio::spawn(async move {
        session_write.encrypt_and_send(b"Hello world!", true).await.unwrap();
    });

    tokio::spawn(async move {
        println!("Received: {:?}", session_read.receive_and_decrypt().await.unwrap());
    });    
    # Ok(())
    # }
    ```*/
    #[cfg(feature = "split")]
    pub fn into_split(self) -> Option<(SessionReadHalf, SessionWriteHalf)> {
        let (read_half, write_half) = self.stream.into_split();
        Some((
            SessionReadHalf {
                read_half,
                peer_cipher: self.peer_cipher?,
                peer_iv: self.peer_iv?,
                peer_counter: self.peer_counter,
                max_recv_size: self.max_recv_size,
            },
            SessionWriteHalf {
                write_half,
                local_cipher: self.local_cipher?,
                local_iv: self.local_iv?,
                local_counter: self.local_counter,
            }
        ))
    }

    /** Return the remote address that this `Session` is connected to.
    ```no_run
    # use std::io::Error;
    use std::net::SocketAddr;
    # use tokio::net::TcpStream;
    # use async_psec::Session;
    # #[tokio::main]
    # async fn main() -> Result<(), Error> {
    
    let addr: SocketAddr = "10.152.152.10:7530".parse().unwrap();

    let stream = TcpStream::connect(addr).await?;
    let psec_session = Session::from(stream);

    assert_eq!(psec_session.peer_addr()?, addr);
    # Ok(())
    # }
    ```*/
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.stream.peer_addr()
    }

    async fn receive(&mut self, buff: &mut [u8]) -> Result<usize, PsecError> {
        receive(&mut self.stream, buff).await
    }

    async fn send(&mut self, buff: &[u8]) -> Result<(), PsecError> {
        send(&mut self.stream, buff).await
    }

    async fn handshake_read(&mut self, buff: &mut [u8], handshake_recv_buff: &mut Vec<u8>) -> Result<(), PsecError> {
        self.receive(buff).await?;
        handshake_recv_buff.extend(buff.as_ref());
        Ok(())
    }

    async fn handshake_write(&mut self, buff: &[u8], handshake_sent_buff: &mut Vec<u8>) -> Result<(), PsecError> {
        self.send(buff).await?;
        handshake_sent_buff.extend(buff);
        Ok(())
    }

    fn hash_handshake(i_am_bob: bool, handshake_sent_buff: &[u8], handshake_recv_buff: &[u8]) -> [u8; 48] {
        let handshake_bytes = if i_am_bob {
            [handshake_sent_buff, handshake_recv_buff].concat()
        } else {
            [handshake_recv_buff, handshake_sent_buff].concat()
        };
        let mut hasher = Sha384::new();
        hasher.update(handshake_bytes);
        let handshake_hash = hasher.finalize();
        handshake_hash.as_slice().try_into().unwrap()
    }

    fn init_ciphers(&mut self, application_keys: ApplicationKeys){
        self.local_cipher = Some(Aes128Gcm::new_from_slice(&application_keys.local_key).unwrap());
        self.local_iv = Some(application_keys.local_iv);
        self.peer_cipher = Some(Aes128Gcm::new_from_slice(&application_keys.peer_key).unwrap());
        self.peer_iv = Some(application_keys.peer_iv);
    }

    /** Performing a PSEC handshake.
    
    If successful, the `Session` is ready to send and receive data and you can retrieve the peer public key with the [`peer_public_key`](Session::peer_public_key) attribute. Otherwise, trying to encrypt or decrypt data with this session will panic.*/
    pub async fn do_handshake(&mut self, identity: &Identity) -> Result<(), PsecError> {
        let mut handshake_sent_buff = Vec::new();
        let mut handshake_recv_buff = Vec::new();

        //ECDHE initial exchange
        //generate random bytes
        let mut handshake_buffer = [0; RANDOM_LEN+PUBLIC_KEY_LENGTH];
        OsRng.fill_bytes(&mut handshake_buffer[..RANDOM_LEN]);
        //generate ephemeral x25519 keys
        let ephemeral_secret = x25519_dalek::EphemeralSecret::new(OsRng);
        let ephemeral_public_key = x25519_dalek::PublicKey::from(&ephemeral_secret);
        handshake_buffer[RANDOM_LEN..].copy_from_slice(&ephemeral_public_key.to_bytes());
        //exchange public keys
        self.handshake_write(&handshake_buffer, &mut handshake_sent_buff).await?;
        self.handshake_read(&mut handshake_buffer, &mut handshake_recv_buff).await?;
        let peer_ephemeral_public_key = slice_to_public_key(&handshake_buffer[RANDOM_LEN..]);
        //compute handshake keys
        let i_am_bob = handshake_sent_buff < handshake_recv_buff; //mutual consensus for keys attribution
        let handshake_hash = Session::hash_handshake(i_am_bob, &handshake_sent_buff, &handshake_recv_buff);
        let shared_secret = ephemeral_secret.diffie_hellman(&peer_ephemeral_public_key);
        let handshake_keys = HandshakeKeys::derive_keys(shared_secret.to_bytes(), handshake_hash, i_am_bob);

        //authentication
        //create auth_msg: random bytes, public key & ephemeral public key signature
        let mut auth_msg = [0; RANDOM_LEN+PUBLIC_KEY_LENGTH+SIGNATURE_LENGTH];
        OsRng.fill_bytes(&mut auth_msg[..RANDOM_LEN]);
        auth_msg[RANDOM_LEN..RANDOM_LEN+PUBLIC_KEY_LENGTH].copy_from_slice(&identity.public.to_bytes());
        auth_msg[RANDOM_LEN+PUBLIC_KEY_LENGTH..].copy_from_slice(&identity.sign(ephemeral_public_key.as_bytes()).to_bytes());
        //encrypt auth_msg
        let local_cipher = Aes128Gcm::new_from_slice(&handshake_keys.local_key).unwrap();
        let encrypted_auth_msg = local_cipher.encrypt(Nonce::from_slice(&handshake_keys.local_iv), auth_msg.as_ref()).unwrap();
        self.handshake_write(&encrypted_auth_msg, &mut handshake_sent_buff).await?;

        let mut encrypted_peer_auth_msg = [0; RANDOM_LEN+PUBLIC_KEY_LENGTH+SIGNATURE_LENGTH+AES_TAG_LEN];
        self.handshake_read(&mut encrypted_peer_auth_msg, &mut handshake_recv_buff).await?;
        //decrypt peer_auth_msg
        let peer_cipher = Aes128Gcm::new_from_slice(&handshake_keys.peer_key).unwrap();
        match peer_cipher.decrypt(Nonce::from_slice(&handshake_keys.peer_iv), encrypted_peer_auth_msg.as_ref()) {
            Ok(peer_auth_msg) => {
                //verify ephemeral public key signature
                self.peer_public_key = Some(peer_auth_msg[RANDOM_LEN..RANDOM_LEN+PUBLIC_KEY_LENGTH].try_into().unwrap());
                let peer_public_key = ed25519_dalek::PublicKey::from_bytes(&self.peer_public_key.unwrap()).unwrap();
                let peer_signature = Signature::from_bytes(&peer_auth_msg[RANDOM_LEN+PUBLIC_KEY_LENGTH..]).unwrap();
                if peer_public_key.verify(peer_ephemeral_public_key.as_bytes(), &peer_signature).is_ok() {
                    //compute handshake finished
                    let handshake_hash = Session::hash_handshake(i_am_bob, &handshake_sent_buff, &handshake_recv_buff);
                    let handshake_finished = crypto::compute_handshake_finished(handshake_keys.local_handshake_traffic_secret, handshake_hash);
                    self.send(&handshake_finished).await?;
                    //verify handshake finished
                    let mut peer_handshake_finished = [0; crypto::HASH_OUTPUT_LEN];
                    self.receive(&mut peer_handshake_finished).await?;
                    if crypto::verify_handshake_finished(peer_handshake_finished, handshake_keys.peer_handshake_traffic_secret, handshake_hash) {
                        //compute application keys
                        let application_keys = ApplicationKeys::derive_keys(handshake_keys.handshake_secret, handshake_hash, i_am_bob);
                        self.init_ciphers(application_keys);
                        return Ok(());
                    }
                }
            }
            Err(_) => {}
        }
        Err(PsecError::TransmissionCorrupted)
    }
}

#[async_trait]
impl PsecWriter for Session {
    async fn encrypt_and_send(&mut self, plain_text: &[u8], use_padding: bool) -> Result<(), PsecError> {
        encrypt_and_send(&mut self.stream, self.local_cipher.as_ref().unwrap(), self.local_iv.as_ref().unwrap(), &mut self.local_counter, plain_text, use_padding).await
    }

    fn encrypt(&mut self, plain_text: &[u8], use_padding: bool) -> Vec<u8> {
        encrypt(self.local_cipher.as_ref().unwrap(), &self.local_iv.unwrap(), &mut self.local_counter, plain_text, use_padding)
    }

    async fn send(&mut self, cipher_text: &[u8]) -> Result<(), PsecError> {
        send(&mut self.stream, cipher_text).await
    }
}

#[async_trait]
impl PsecReader for Session {
    fn set_max_recv_size(&mut self, size: usize, is_raw_size: bool) {
        self.max_recv_size = compute_max_recv_size(size, is_raw_size);
    }
    async fn receive_and_decrypt(&mut self) -> Result<Vec<u8>, PsecError> {
        receive_and_decrypt(&mut self.stream, &self.peer_cipher.as_ref().unwrap(), &self.peer_iv.unwrap(), &mut self.peer_counter, self.max_recv_size).await
    }
    async fn into_receive_and_decrypt(mut self) -> (Result<Vec<u8>, PsecError>, Self) {
        (self.receive_and_decrypt().await, self)
    }
}

impl From<TcpStream> for Session {
    fn from(stream: TcpStream) -> Self {
        Session {
            stream: stream,
            local_cipher: None,
            local_iv: None,
            local_counter: 0,
            peer_cipher: None,
            peer_iv: None,
            peer_counter: 0,
            peer_public_key: None,
            max_recv_size: DEFAULT_MAX_RECV_SIZE,
        }
    }
}

impl Debug for Session {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let handshake_successful = self.peer_cipher.is_some();
        let mut debug_struct = f.debug_struct("PSEC Session");
        debug_struct
            .field("stream", &self.stream)
            .field("max_recv_size", &self.max_recv_size)
            .field("handshake_successful", &handshake_successful);
        if let Some(peer_public_key) = self.peer_public_key {
            debug_struct.field("peer_public_key", &hex_encode(&peer_public_key));
        }
        if handshake_successful {
            debug_struct.field("local_counter", &self.local_counter)
                .field("local_iv", &hex_encode(&self.local_iv.unwrap()))
                .field("peer_counter", &self.peer_counter)
                .field("peer_iv", &hex_encode(&self.peer_iv.unwrap()));
        }
        debug_struct.finish()
    }
}

fn hex_encode(buff: &[u8]) -> String {
    let mut s = String::with_capacity(buff.len()*2);
    for i in buff {
        s += &format!("{:x}", i);
    }
    s
}

#[cfg(test)]
mod tests {
    use super::{pad, unpad, MESSAGE_LEN_LEN};

    #[test]
    fn padding() {
        let padded = pad(b"Hello world!", true);
        assert_eq!(padded.len(), 1000);
        let not_padded = pad(b"Hello world!", false);
        assert_eq!(not_padded.len(), "Hello world!".len()+MESSAGE_LEN_LEN);

        let unpadded = unpad(padded).unwrap();
        assert_eq!(unpadded, unpad(not_padded).unwrap());
        assert_eq!(unpadded, b"Hello world!");

        let large_msg = "a".repeat(5000);
        assert_eq!(pad(large_msg.as_bytes(), true).len(), 8000);
    }
}