1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
use std::collections::HashMap;
use std::future::Future;
use std::sync::Arc;

use itertools::Itertools;
use tokio::task::JoinSet;

use crate::pipeline::io::*;
use crate::pipeline::sync::*;
use crate::pipeline::workers::{
    new_detached_flattener, new_detached_producer, new_detached_worker,
};
use crate::pipeline::*;

struct CreateWorkersOutput {
    producers: JoinSet<()>,
    workers: JoinSet<()>,
    signal_txs: Vec<Sender<StageWorkerSignal>>,
}

/// Used to construct a [Pipeline].
///
/// Can be created using [Pipeline::builder].
///
///
#[derive(Default)]
pub struct PipelineBuilder {
    stages: Vec<Stage>,
}

impl PipelineBuilder {
    /// A "producer" stage; registers a list of inputs to be written to a provided pipe.
    ///
    /// The string provided to `pipe` defines where the values will be written to.
    /// The values will be written one at a time into the pipe.
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_inputs<S, I>(self, pipe: S, inputs: Vec<I>) -> Self
    where
        S: AsRef<str>,
        I: Send + 'static,
    {
        self.with_branching_inputs(
            vec![pipe],
            inputs
                .into_iter()
                .map(|i| vec![Box::new(i) as BoxedAnySend])
                .collect(),
        )
    }

    /// A "producer" stage; registers a list of multiple inputs to be written to a list of
    /// corresponding pipes.
    ///
    /// The strings provided to `pipes` define where each input will go.
    /// The values will be written one at a time into each pipe.
    ///
    /// For example, say you have the following:
    ///
    /// ```text
    /// List of multiple inputs: [ [1, "hi", true], [2, "bye", false], [3, ".", false] ]
    /// List of pipes: [ "numbers", "strings", "bools" ]
    /// ```
    ///
    /// The inputs would be sent to the pipes like this:
    ///
    /// ```text
    /// Pipe         1st   2nd    3rd
    /// "numbers" <- 1     2      3
    /// "strings" <- "hi"  "bye"  "."
    /// "bools"   <- true  false  false
    /// ```
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_branching_inputs<S>(self, pipes: Vec<S>, inputs: Vec<Vec<BoxedAnySend>>) -> Self
    where
        S: AsRef<str>,
    {
        let mut iter = inputs.into_iter();
        self.with_branching_producer(pipes, move || {
            let inputs = iter.next();
            async move { inputs.map(|is| is.into_iter().map(Some).collect()) }
        })
    }

    /// A "producer" stage; registers a stage that produces values and writes them into a pipe.
    ///
    /// The strings provided to `pipes` define where each input will go.
    ///
    /// The producer will continue producing values while the user-provided task function returns
    /// [Some]. This means that it is possible to create an infinite stream of values by simply
    /// never returning [None].
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_producer<S, I, F, Fut>(self, pipe: S, mut task: F) -> Self
    where
        S: AsRef<str>,
        I: Send + 'static,
        F: FnMut() -> Fut + Send + 'static,
        Fut: Future<Output = Option<I>> + Send + 'static,
    {
        self.with_branching_producer(vec![pipe], move || {
            let task_fut = task();
            async move {
                task_fut
                    .await
                    .map(|t| vec![Some(Box::new(t) as BoxedAnySend)])
            }
        })
    }

    /// A "producer" stage; registers a new stage that produces multiple values and writes them into
    /// their respective pipe.
    ///
    /// The strings provided to `pipes` define where each input will go.
    ///
    /// The producer will continue producing values while the user-provided task function returns
    /// [Some]. This means that it is possible to create an infinite stream of values by simply
    /// never returning [None].
    ///
    /// Each individual [Option] within the task output determines whether it will be sent to the
    /// corresponding pipe. If [Some] is specified, the inner value will be sent, if [None] is
    /// specified, nothing will be sent.
    ///
    /// As with all stages that have more than one ("branching") outputs, it's possible that each
    /// output could have a different type, and so to avoid large binary sizes from static
    /// dispatching, dynamic dispatching is used instead, utilizing the [BoxedAnySend] type. For
    /// examples on how to return these types of values in task functions, see [BoxedAnySend]'s
    /// examples.
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_branching_producer<S, F, Fut>(mut self, pipes: Vec<S>, mut task: F) -> Self
    where
        S: AsRef<str>,
        F: FnMut() -> Fut + Send + 'static,
        Fut: Future<Output = Option<Vec<Option<BoxedAnySend>>>> + Send + 'static,
    {
        let pipes = pipes.iter().map(|p| p.as_ref().to_string()).collect();
        self.stages.push(Stage::Producer {
            function: Box::new(move || Box::pin(task())),
            pipes: ProducerPipeNames { writers: pipes },
        });
        self
    }

    /// A "consumer" stage; registers a new stage that consumes values from a pipe.
    ///
    /// The string provided to `pipe` define where values will be read from.
    ///
    /// The consumer will continue consuming values until the pipeline is terminated or the pipe it
    /// is receiving from is closed.
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_consumer<S, I, F, Fut>(self, pipe: S, options: WorkerOptions, task: F) -> Self
    where
        S: AsRef<str>,
        I: Send + 'static,
        F: Fn(I) -> Fut + Send + Sync + 'static,
        Fut: Future<Output = ()> + Send + 'static,
    {
        self.with_branching_stage(pipe, Vec::<String>::new(), options, move |value| {
            let task_fut = task(value);
            async move {
                task_fut.await;
                Some(Vec::<Option<BoxedAnySend>>::new())
            }
        })
    }

    /// A "regular" stage; registers a new stage that operates on an input and produce a single
    /// output value that is written to a pipe.
    ///
    /// The string provided to `input_pipe` defines where values will be read from.
    /// The string provided to `output_pipe` defines where the produced output will go.
    ///
    /// The worker will continue working on input values until the pipeline is terminated or the
    /// pipe it is receiving from is closed.
    ///
    /// The [Option] returned by the task function determines whether it will be sent to the output
    /// pipe. If [Some] is specified, the inner value will be sent, if [None] is specified, nothing
    /// will be sent.
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_stage<I, O, F, Fut>(
        self,
        input_pipe: impl AsRef<str>,
        output_pipe: impl AsRef<str>,
        options: WorkerOptions,
        task: F,
    ) -> Self
    where
        I: Send + 'static,
        O: Send + 'static,
        F: Fn(I) -> Fut + Send + Sync + 'static,
        Fut: Future<Output = Option<O>> + Send + 'static,
    {
        self.with_branching_stage(input_pipe, vec![output_pipe], options, move |value| {
            let task_fut = task(value);
            async move {
                task_fut
                    .await
                    .map(|v| Box::new(v) as BoxedAnySend)
                    .map(|v| vec![Some(v)])
            }
        })
    }

    /// A "regular" stage; registers a new stage that operates on an input and produces multiple
    /// values that are written into their respective pipe.
    ///
    /// The string provided to `input_pipe` defines where values will be read from.
    /// The strings provided to `output_pipes` define where each produced output will go.
    ///
    /// The worker will continue working on input values until the pipeline is terminated or the
    /// pipe it is receiving from is closed.
    ///
    /// * If the user-defined task function returns [None], nothing will be done.
    /// * If it returns [Some], the inner value ([`Vec<Option<BoxedAnySend>>`]) will have the
    ///   following applied to each output option:
    ///     * If [Some] is specified, the inner value will be sent to the corresponding pipe.
    ///     * If [None] is specified, nothing will be sent.
    ///
    /// As with all stages that have more than one ("branching") outputs, it's possible that each
    /// output could have a different type, and so to avoid large binary sizes from static
    /// dispatching, dynamic dispatching is used instead, utilizing the [BoxedAnySend] type. For
    /// examples on how to return these types of values in task functions, see [BoxedAnySend]'s
    /// examples.
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_branching_stage<I, F, Fut>(
        mut self,
        input_pipe: impl AsRef<str>,
        output_pipes: Vec<impl AsRef<str>>,
        options: WorkerOptions,
        task: F,
    ) -> Self
    where
        I: Send + 'static,
        F: Fn(I) -> Fut + Send + Sync + 'static,
        Fut: Future<Output = Option<Vec<Option<BoxedAnySend>>>> + Send + 'static,
    {
        let input_pipe = input_pipe.as_ref().to_string();
        let output_pipes = output_pipes
            .iter()
            .map(|p| p.as_ref().to_string())
            .collect();
        let err_pipe = input_pipe.clone();

        self.stages.push(Stage::Regular {
            function: Box::new(move |value: BoxedAnySend| {
                let value = downcast_from_pipe(value, &err_pipe);
                Box::pin(task(*value))
            }),
            pipes: TaskPipeNames {
                reader: input_pipe,
                writers: output_pipes,
            },
            options,
        });
        self
    }

    /// An "iterator-based" stage; registers a new stage that takes the data from one pipe and
    /// "flattens" it, feeding the results into another.
    ///
    /// This is useful if you have a pipe that produces a list of values in a single task execution,
    /// but you want to use it as input to another stage that takes only the individual values.
    ///
    /// The generic parameter is used by the pipeline builder to know what concrete type to
    /// cast the value to, which mean turbofish syntax will be needed to specify what the iterator
    /// type of that pipe is, for example:
    /// `Pipeline::builder().with_flattener::<Vec<u8>>("data", "bytes")`
    ///
    /// The string provided to `from_pipe` defines where the iterator of values will be read from.
    /// The string provided to `to_pipe` defines where the individual values will go.
    ///
    /// The worker will continue working until the pipeline is terminated or the pipe it is
    /// receiving from is closed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use std::sync::atomic::{AtomicI32, Ordering};
    /// use async_pipes::Pipeline;
    /// use async_pipes::WorkerOptions;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let sum = Arc::new(AtomicI32::new(0));
    ///     let task_sum = sum.clone();
    ///
    ///     Pipeline::builder()
    ///         .with_inputs("NumberSets", vec![vec![1, 2], vec![3, 4, 5]])
    ///         .with_flattener::<Vec<i32>>("NumberSets", "Numbers")
    ///         .with_consumer("Numbers", WorkerOptions::default_single_task(), move |value: i32| {
    ///             let sum = task_sum.clone();
    ///             async move {
    ///                 sum.fetch_add(value, Ordering::SeqCst);
    ///             }
    ///         })
    ///         .build()
    ///         .expect("failed to build pipeline")
    ///         .wait()
    ///         .await;
    ///
    ///     assert_eq!(sum.load(Ordering::Acquire), 15);
    /// }
    /// ```
    ///
    /// # Returns
    ///
    /// This pipeline builder.
    ///
    pub fn with_flattener<It>(
        mut self,
        from_pipe: impl AsRef<str>,
        to_pipe: impl AsRef<str>,
    ) -> Self
    where
        It: IntoIterator + Send + 'static,
        It::Item: Send,
    {
        let input_pipe = from_pipe.as_ref().to_string();
        let output_pipe = to_pipe.as_ref().to_string();
        let err_pipe = input_pipe.clone();

        self.stages.push(Stage::Iterator {
            stage_type: IterStageType::Flatten,
            caster: Box::new(move |value: BoxedAnySend| {
                downcast_from_pipe::<It>(value, &err_pipe)
                    .into_iter()
                    .map(|v| Box::new(v) as BoxedAnySend)
                    .collect()
            }),
            pipes: TaskPipeNames {
                reader: input_pipe,
                writers: vec![output_pipe],
            },
            options: WorkerOptions::default_single_task(),
        });
        self
    }

    /// A utility function for improving readability when building pipelines.
    ///
    /// This makes splitting up task definitions into functions easier by allowing the caller
    /// to pass in a function that takes `self` and returns `self`, effectively providing
    /// continuity to a call chain.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use std::sync::atomic::{AtomicI32, Ordering};
    /// use async_pipes::Pipeline;
    /// use async_pipes::PipelineBuilder;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let sum = Arc::new(AtomicI32::new(0));
    ///
    ///     Pipeline::builder()
    ///         .with_inputs("Numbers", vec![1, 2, 3, 4, 5])
    ///         .also(build_consumer(sum.clone()))
    ///         .build()
    ///         .expect("failed to build pipeline")
    ///         .wait()
    ///         .await;
    ///
    ///     assert_eq!(sum.load(Ordering::Acquire), 15);
    /// }
    ///
    /// fn build_consumer(sum: Arc<AtomicI32>) -> impl FnOnce(PipelineBuilder) -> PipelineBuilder {
    ///     use async_pipes::WorkerOptions;
    /// |builder| builder.with_consumer("Numbers", WorkerOptions::default(), move |value: i32| {
    ///         let sum = sum.clone();
    ///         async move {
    ///             sum.fetch_add(value, Ordering::SeqCst);
    ///         }
    ///     })
    /// }
    /// ```
    ///
    pub fn also(self, handler: impl FnOnce(PipelineBuilder) -> PipelineBuilder) -> Self {
        handler(self)
    }

    /// When the pipeline is ready to be built, this is called and will return a pipeline if
    /// it was successfully built, otherwise it will return an error describing why it could not be
    /// built.
    ///
    /// # Errors
    ///
    /// 1. A pipe is "open-ended", meaning there's no stage consuming values from that pipe.
    /// 2. The reader of a pipe was used more than once.
    ///
    pub fn build(self) -> Result<Pipeline, String> {
        let configs = self.create_pipe_configs()?;

        // Register pipes in the synchronizer
        let mut synchronizer = Synchronizer::default();
        self.register_pipe_configs(&mut synchronizer, &configs);

        // Make the synchronizer immutable and the create the actual pipes
        let synchronizer = Arc::new(synchronizer);
        let pipes_map = self.create_pipes(&synchronizer, configs);

        let CreateWorkersOutput {
            producers,
            workers,
            signal_txs,
        } = self.create_workers(pipes_map)?;

        Ok(Pipeline {
            synchronizer,
            producers,
            workers,
            signal_txs,
        })
    }

    /// Create the producers, workers, and the associated signal channels.
    fn create_workers(
        self,
        mut pipes_map: HashMap<String, Pipe<BoxedAnySend>>,
    ) -> Result<CreateWorkersOutput, String> {
        let mut producers = JoinSet::new();
        let mut workers = JoinSet::new();
        let mut signal_txs = Vec::new();

        let mut worker_args =
            |pipe_names: TaskPipeNames, pipes: &mut HashMap<String, Pipe<BoxedAnySend>>| {
                let writers = find_writers(&pipe_names.writers, pipes)?;
                let reader = find_reader(&pipe_names.reader, pipes)?;

                let (signal_tx, signal_rx) = tokio::sync::mpsc::channel(1);
                signal_txs.push(signal_tx);

                Result::<_, String>::Ok((reader, writers, signal_rx))
            };

        let mut has_producer = false;
        for stage in self.stages {
            match stage {
                Stage::Producer { function, pipes } => {
                    let writers = find_writers(&pipes.writers, &pipes_map)?;
                    has_producer = true;
                    producers.spawn(new_detached_producer(function, writers));
                }

                Stage::Regular {
                    function,
                    pipes,
                    options,
                } => {
                    let (reader, writers, signal_rx) = worker_args(pipes, &mut pipes_map)?;
                    workers.spawn(new_detached_worker(
                        function,
                        reader,
                        writers,
                        signal_rx,
                        options.try_into()?,
                    ));
                }

                Stage::Iterator {
                    stage_type,
                    caster,
                    pipes,
                    options,
                } => {
                    let (reader, writers, signal_rx) = worker_args(pipes, &mut pipes_map)?;
                    workers.spawn(match stage_type {
                        IterStageType::Flatten => new_detached_flattener(
                            caster,
                            reader,
                            writers,
                            signal_rx,
                            options.try_into()?,
                        ),
                    });
                }
            }
        }

        if !has_producer {
            return Err("pipeline must have at least one producer".to_string());
        }

        Ok(CreateWorkersOutput {
            producers,
            workers,
            signal_txs,
        })
    }

    /// Construct the configuration of all the pipes.
    ///
    /// We can achieve a set of unique names easily by using the `reader` of the "task" and "iter"
    /// stages and de-duplicating that list.
    ///
    /// For each pipe, there is only one reader, but there can be multiple writers.
    /// Also, producers do not have a reader, only writers.
    fn create_pipe_configs(&self) -> Result<Vec<PipeConfig>, String> {
        let mut configs = Vec::new();
        for stage in &self.stages {
            match stage {
                Stage::Regular { pipes, options, .. } | Stage::Iterator { pipes, options, .. } => {
                    configs.push(PipeConfig {
                        name: pipes.reader.clone(),
                        options: options.clone().try_into()?,
                    });
                }

                _ => {}
            }
        }

        Ok(configs
            .into_iter()
            .unique_by(|conf| conf.name.clone())
            .collect())
    }

    /// Register all the pipe configurations to the synchronizer.
    ///
    /// This is done before creating the pipes as the synchronizer only needs to be mutable
    /// for this step, afterwards it can be considered "immutable".
    fn register_pipe_configs(&self, sync: &mut Synchronizer, pipe_configs: &[PipeConfig]) {
        for conf in pipe_configs {
            sync.register(&conf.name);
        }
    }

    /// The reader of a pipe is wrapped in an option to allow the build method to [Option::take] it
    /// to maintain the invariant that there's only one reader per pipe.
    fn create_pipes(
        &self,
        sync: &Arc<Synchronizer>,
        configs: Vec<PipeConfig>,
    ) -> HashMap<String, Pipe<BoxedAnySend>> {
        configs
            .into_iter()
            .map(|conf| {
                let buf_size = conf.options.reader_buffer_size.get();
                let (tx, rx) = tokio::sync::mpsc::channel(buf_size);
                let pipe = Pipe {
                    writer: PipeWriter::new(&conf.name, sync.clone(), tx),
                    reader: Some(PipeReader::new(&conf.name, sync.clone(), rx)),
                };
                (conf.name, pipe)
            })
            .collect()
    }
}