1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
//! Create a lightweight, concurrent data processing pipeline for Rust applications.
//!
//! # Overview
//!
//! Async Pipes provides a simple way to create high-throughput data processing pipelines by
//! utilizing Rust's asynchronous runtime capabilities. This is done by managing task execution and
//! data flow so the developer only has to worry about the task-specific implementation for each
//! stage in the pipeline.
//!
//! # Terminology
//!
//! All of these are abstractions to help conceptualize how data is transferred and operated on in
//! the pipeline.
//!
//! * **Pipe** - Represents something where a type of data can flow.
//! An example of this being a pipe that allows strings to flow through it.
//! * **Stage** - Represents the "nodes" in a pipeline where work is done.
//! A stage typically includes the definition of the worker, an optional pipe connection
//! for reading data from, and zero or more pipe connections for sending data to.
//! * **Worker** - A worker is internally defined by this library, and does the work of
//! reading from the optional input pipe, performing a user-defined task on the input, and
//! then writing the output of that task to the zero or more output pipes.
//! * **Pipeline** - Represents the overall set of stages and the pipes that connect the stages.
//! Pipelines don't necessarily have to be linear, they can branch off of one stage into
//! multiple stages.
//!
//! # Getting Started
//!
//! A pipeline can be built using the builder provided by [Pipeline::builder]. This allows the
//! pipeline to be configured before any work is done.
//! ```
//! use async_pipes::{Pipeline, PipelineBuilder};
//!
//! let builder: PipelineBuilder = Pipeline::builder();
//! ```
//!
//! Using the builder, stages can be defined, where a stage contains the name of a pipe to read from
//! (if applicable), the name of a pipe to write to (or more if applicable), and a user-defined
//! "task" function. Demonstrated below is a pipeline being built with a producer stage, a regular
//! stage, and a consuming stage.
//! ```
//! use async_pipes::Pipeline;
//!
//! #[tokio::main]
//! async fn main() {
//! let pipeline: Result<Pipeline, String> = Pipeline::builder()
//! .with_inputs("InputPipe", vec![1, 2, 3])
//! .with_stage("InputPipe", "OutputPipe", |n: i32| async move {
//! Some(n + 1)
//! })
//! .with_consumer("OutputPipe", |n: i32| async move {
//! println!("{}", n)
//! })
//! .build();
//!
//! assert!(pipeline.is_ok());
//! }
//! ```
//!
//! With the builder, any number of stages can be defined with any number of pipes, but there are a
//! few requirements:
//! 1. There must be at least one producer - how else will data get into the pipeline?
//! 2. Every pipe must have a corresponding stage that reads data from it - this is required to
//! avoid a deadlock from pipes being filled up but not emptied.
//!
//! These requirements are enforced by [PipelineBuilder::build] returning a
//! [Result<Pipeline, String>] where an error describing the missing requirement is returned.
//!
//! For example, here is an invalid pipeline due to requirement (1) not being followed:
//! ```
//! use async_pipes::Pipeline;
//!
//! #[tokio::main]
//! async fn main() {
//! let pipeline = Pipeline::builder()
//! .with_consumer("MyPipe", |n: usize| async move {
//! println!("{}", n);
//! })
//! .build();
//!
//! assert_eq!(pipeline.unwrap_err(), "pipeline must have at least one producer");
//! }
//! ```
//!
//! And here is an invalid pipeline due to requirement (2) not being followed:
//! ```
//! use async_pipes::Pipeline;
//!
//! #[tokio::main]
//! async fn main() {
//! let pipeline = Pipeline::builder()
//! .with_inputs("MyPipe", vec![1, 2, 3])
//! .build();
//!
//! assert_eq!(pipeline.unwrap_err(), "pipeline has open-ended pipe: 'MyPipe'");
//! }
//! ```
//!
//! Once an `Ok(Pipeline)` is returned, it can be waited on using [Pipeline::wait], where it will
//! make progress until all workers finish or there is no more data in the pipeline.
//!
//! _Note_: When a pipeline is built, depending on the runtime it may or may not be running.
//! In single-threaded runtimes no progress will be made as the workers can't make progress on their
//! own unless the single thread yields to them. It is possible for them to make progress in multi-
//! threaded runtimes. However, the pipeline will never "finish" until [Pipeline::wait] is called.
//!
//! ```
//! use async_pipes::Pipeline;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), String> {
//! Pipeline::builder()
//! .with_inputs("InputPipe", vec![1, 2, 3])
//! .with_stage("InputPipe", "OutputPipe", |n: i32| async move {
//! Some(n + 1)
//! })
//! .with_consumer("OutputPipe", |n: i32| async move {
//! println!("{}", n)
//! })
//! .build()?
//! .wait()
//! .await;
//!
//! Ok(())
//! }
//! ```
//!
//! ### Stateful Stages
//!
//! It is possible to maintain state in a stage across tasks, however the state must be [Send].
//! Usually this is best done for non-Send objects by wrapping them in an [std::sync::Mutex]
//! (or even better, [tokio::sync::Mutex]).
//!
//! Another caveat with state in stages is that since the task function returns a future
//! (`async move { ... }`), it requires ownership of non-`'static` lifetime values in order to
//! continue working on other inputs as the future may not be able to reference borrowed state.
//! A way around this is to wrap values that may be expensive to clone in [std::sync::Arc].
//!
//! The following is an example of a mutable sum being used as a stateful item in a stage:
//! ```
//! use async_pipes::Pipeline;
//! use std::sync::Arc;
//! use tokio::sync::Mutex;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), String> {
//! // [AtomicUsize] may be preferred here, but we use [Mutex] for the sake of this example
//! let sum = Arc::new(Mutex::new(0));
//! // For the assertion at the end of this example
//! let test_sum = sum.clone();
//!
//! Pipeline::builder()
//! .with_inputs("InputPipe", vec![1, 2, 3])
//! .with_stage("InputPipe", "OutputPipe", move |n: i32| {
//! // As the sum is owned by this closure, we need to clone it to move an owned value
//! // into the `async move` block.
//! let sum = sum.clone();
//! async move {
//! let mut sum = sum.lock().await;
//! *sum += n;
//! Some(*sum)
//! }
//! })
//! .with_consumer("OutputPipe", |n: i32| async move {
//! println!("Counter now at: {}", n)
//! })
//! .build()?
//! .wait()
//! .await;
//!
//! assert_eq!(*test_sum.lock().await, 6);
//! Ok(())
//! }
//! ```
//!
//! # Stage Categories <a name="stage-categories"></a>
//!
//! ### Producer ("entry stage")
//! A producer is the only place where data can be fed into the pipeline.
//!
//! **Static (definite)**
//!
//! This is where a list of concrete values can be provided to the stage and the worker will loop
//! over each value and feed it into a pipe.
//! * [PipelineBuilder::with_inputs]
//! * [PipelineBuilder::with_branching_inputs]
//!
//! **Dynamic (indefinite)**
//!
//! This is useful when there are no pre-defined input values. Instead, a function that produces a
//! single value can be provided that produces an [Option] where it's continually called until
//! [None] is returned. This can be useful when receiving data over the network, or data is read
//! from a file.
//! * [PipelineBuilder::with_producer]
//! * [PipelineBuilder::with_branching_producer]
//!
//! ### Consumer ("terminating stage")
//! A consumer is a final stage in the pipeline where data ends up. It takes in a single pipe to
//! read from and produces no output.
//! * [PipelineBuilder::with_consumer]
//!
//! ### Regular (1 input, 1 output)
//! This is an intermediate stage in the pipeline that takes in a single input, and produces one or
//! more output.
//! * [PipelineBuilder::with_stage]
//! * [PipelineBuilder::with_branching_stage]
//!
//! ### Utility
//! This is an intermediate stage in the pipeline that can be used to do common operations on data
//! between pipes.
//! * [PipelineBuilder::with_flattener]
//!
//! # Stage Variants
//!
//! ### Branching (1 input, N outputs)
//! A branching stage is a stage where multiple output pipes are connected. This means the task
//! defined by the user in this stage returns two or more output values.
//! * [PipelineBuilder::with_branching_inputs]
//! * [PipelineBuilder::with_branching_producer]
//! * [PipelineBuilder::with_branching_stage]
//!
//! # Examples
//!
//! ```
//! use std::sync::Arc;
//!
//! use async_pipes::Pipeline;
//!
//! use std::sync::atomic::{AtomicUsize, Ordering};
//! use tokio::sync::Mutex;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), String> {
//! // Due to the task function returning a future (`async move { ... }`), data needs
//! // to be wrapped in an [Arc] and then cloned in order to be moved into the task
//! // while still referencing it from this scope
//! let total_count = Arc::new(AtomicUsize::new(0));
//! let task_total_count = total_count.clone();
//!
//! Pipeline::builder()
//! .with_inputs("MapPipe", vec!["a", "bb", "ccc"])
//!
//! // Read from the 'MapPipe' and write to the 'ReducePipe'
//! .with_stage("MapPipe", "ReducePipe", |value: &'static str| async move {
//! // We return an option to tell the stage whether to write the new value
//! // to the pipe or ignore it
//! Some(format!("{}!", value))
//! })
//!
//! // Read from the 'ReducePipe'.
//! .with_consumer("ReducePipe", move |value: String| {
//! // The captured `task_total_count` can't move out of this closure, so we
//! // have to clone it to give ownership to the async block. Remember, it's
//! // wrapped in an [Arc] so we're still referring to the original data.
//! let total_count = task_total_count.clone();
//! async move {
//! total_count.fetch_add(value.len(), Ordering::SeqCst);
//! }
//! })
//!
//! // Build the pipeline and wait for it to finish
//! .build()?
//! .wait()
//! .await;
//!
//! // We see that after the data goes through our map and reduce stages,
//! // we effectively get this: `len("a!") + len("bb!") + len("ccc!") = 9`
//! assert_eq!(total_count.load(Ordering::Acquire), 9);
//! Ok(())
//! }
//! ```
//!
#![warn(missing_docs)]
pub use pipeline::*;
mod pipeline;
/// A value used in coordination with [branch] to indicate there is no value to be sent to a
/// pipe.
///
/// # Examples
///
/// ```
/// use async_pipes::{NoOutput, BoxedAnySend, branch};
///
/// let outputs: Vec<Option<BoxedAnySend>> = branch![
/// "one",
/// NoOutput,
/// 3,
/// ];
///
/// assert!(outputs[0].is_some());
/// assert!(outputs[1].is_none());
/// assert!(outputs[2].is_some());
/// ```
#[derive(Debug, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
pub struct NoOutput;
/// Defines an idiomatic way to provide values to a static branching producer stage (i.e. concrete
/// input values).
///
/// A list of tuples of values (of possibly different types) can be provided, and those values will be boxed
/// and then put into a [Vec].
///
/// # Examples
///
/// Here's an example of what is returned by the macro call.
/// ```
/// use async_pipes::{BoxedAnySend, branch_inputs};
///
/// let inputs: Vec<Vec<BoxedAnySend>> = branch_inputs![
/// (1usize, 1i32, 1u8),
/// (2usize, 2i32, 2u8),
/// (3usize, 3i32, 3u8),
/// ];
///
/// assert_eq!(inputs.len(), 3);
/// ```
///
/// Here's an example of the macro being used in a pipeline.
/// ```
/// use async_pipes::{branch_inputs, Pipeline};
///
/// #[tokio::main]
/// async fn main() {
/// Pipeline::builder()
/// .with_branching_inputs(
/// vec!["One", "Two"],
/// branch_inputs![
/// (1usize, "Hello"),
/// (1usize, "World"),
/// (1usize, "!"),
/// ],
/// )
/// .with_consumer("One", |value: usize| async move { /* ... */ })
/// .with_consumer("Two", |value: &'static str| async move { /* ... */ })
/// .build()
/// .unwrap()
/// .wait()
/// .await;
/// }
/// ```
#[macro_export]
macro_rules! branch_inputs {
($(( $($x:expr),+ $(,)? )),* $(,)?) => {
vec![
$( branch_inputs!($($x),+) ),*
]
};
($($x:expr),+ $(,)?) => {
vec![
$(std::boxed::Box::new($x) as $crate::BoxedAnySend),+
]
};
}
/// Defines an idiomatic way to return values in a branching stage.
///
/// A list of values (possibly of different types) can be provided. These values will be boxed and
/// then wrapped in a [Some]. In order to specify [None] (i.e. no value should be sent to the
/// respective pipe), [NoOutput] should be used in the place of a value. The macro will detect this
/// and use [None] in its place.
///
/// # Examples
///
/// Here's an example of what is returned by the macro call.
/// ```
/// use async_pipes::{BoxedAnySend, NoOutput, branch};
///
/// let inputs: Vec<Option<BoxedAnySend>> = branch![1, "hello", true, NoOutput, 12.0];
///
/// assert_eq!(inputs.len(), 5);
/// assert!(inputs[3].is_none())
/// ```
///
/// Here's an example of the macro being used in a pipeline.
/// ```
/// use async_pipes::{branch, branch_inputs, Pipeline};
/// use std::sync::atomic::{AtomicUsize, Ordering};
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
/// Pipeline::builder()
/// .with_inputs("Count", vec![1, 2, 3])
/// .with_branching_stage("Count", vec!["Value", "Doubled"], |value: i32| async move {
/// Some(branch![value, value * 2])
/// })
/// .with_consumer("Value", |value: i32| async move { /* ... */ })
/// .with_consumer("Doubled", |value: i32| async move { /* ... */ })
/// .build()
/// .unwrap()
/// .wait()
/// .await;
/// }
/// ```
#[macro_export]
macro_rules! branch {
($($x:expr),+ $(,)?) => {
std::vec![
$({
let x: $crate::BoxedAnySend = std::boxed::Box::new($x);
x.downcast_ref::<$crate::NoOutput>().is_none().then_some(x)
}),+
]
};
}