1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
use std::any::{type_name, Any};
use std::collections::{HashMap, HashSet};
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use tokio::select;
use tokio::sync::mpsc::{channel, Receiver, Sender};
use tokio::sync::Mutex;
use tokio::task::{yield_now, JoinError, JoinSet};
use crate::io::{PipeReader, PipeWriter};
use crate::sync::Synchronizer;
use crate::{new_id, StageWorkerSignal};
/// A Box that can hold any value ([Any]) that is also [Send].
///
/// Values sent through pipes are trait objects of this type.
///
/// This type is publicly exposed as it's needed when building a pipeline stage with multiple
/// outputs. Since each output could have a different type, it's more feasible to define the
/// outputs to use dynamic dispatching rather that static dispatching.
///
/// # Examples
///
/// Here's an example of a closure representing the task function given to the pipeline builder
/// when creating a "branching" stage. Three outputs are returned, each of a different type.
/// ```
/// use std::ops::Deref;
/// use async_pipes::BoxedAnySend;
///
/// tokio_test::block_on(async {
/// let task = |value: String| async move {
/// let length: usize = value.len();
/// let excited: String = format!("{}!", value);
/// let odd_length: bool = length % 2 == 1;
///
/// Option::<Vec<Option<BoxedAnySend>>>::Some(vec![
/// Some(Box::new(length)),
/// Some(Box::new(excited)),
/// Some(Box::new(odd_length)),
/// ])
/// };
///
/// // E.g.:
/// // ...
/// // .with_branching_stage("pipe_in", vec!["pipe_len", "pipe_excited", "pipe_odd"], <task>)
/// // ...
///
/// let mut results = task("hello".to_string()).await.unwrap();
///
/// let length = results.remove(0).unwrap().downcast::<usize>().unwrap();
/// let excited = results.remove(0).unwrap().downcast::<String>().unwrap();
/// let odd_length = results.remove(0).unwrap().downcast::<bool>().unwrap();
///
/// assert_eq!(*length, 5usize);
/// assert_eq!(*excited, "hello!".to_string());
/// assert_eq!(*odd_length, true);
/// });
/// ```
pub type BoxedAnySend = Box<dyn Any + Send + 'static>;
type TaskFuture = Pin<Box<dyn Future<Output = Option<Vec<TaskFutureOutput>>> + Send + 'static>>;
type TaskFutureOutput = Option<BoxedAnySend>;
type ProducerFn = Box<dyn FnMut() -> TaskFuture + Send + 'static>;
type TaskFn = Box<dyn Fn(BoxedAnySend) -> TaskFuture + Send + Sync + 'static>;
struct ProducerStage {
function: ProducerFn,
pipes: ProducerPipeNames,
}
struct ProducerPipeNames {
writers: Vec<String>,
}
struct TaskStage {
function: TaskFn,
pipes: TaskPipeNames,
}
struct TaskPipeNames {
reader: String,
writers: Vec<String>,
}
struct Pipe<T> {
writer: PipeWriter<T>,
/// Use an option here to "take" it when a reader is used.
/// Only allow one reader per stage.
reader: Option<PipeReader<T>>,
}
/// Used to construct a [Pipeline].
///
/// Can be created using [Pipeline::builder].
///
///
#[derive(Default)]
pub struct PipelineBuilder {
producer_fns: Vec<ProducerStage>,
task_fns: Vec<TaskStage>,
}
impl PipelineBuilder {
/// A "producer" stage; registers a list of inputs to be written to a provided pipe.
///
/// The string provided to `pipe` defines where the values will be written to.
/// The values will be written one at a time into the pipe.
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_inputs<S, I>(self, pipe: S, inputs: Vec<I>) -> Self
where
S: AsRef<str>,
I: Send + 'static,
{
self.with_branching_inputs(
vec![pipe],
inputs
.into_iter()
.map(|i| vec![Box::new(i) as BoxedAnySend])
.collect(),
)
}
/// A "producer" stage; registers a list of multiple inputs to be written to a list of corresponding pipes.
///
/// The strings provided to `pipes` define where each input will go.
/// The values will be written one at a time into each pipe.
///
/// For example, say you have the following:
///
/// `List of multiple inputs: [ [1, "hi", true], [2, "bye", false], [3, ".", false] ]`
/// `List of pipes: [ "numbers", "strings", "bools" ]`
///
/// The inputs would be sent to the pipes like this:
///
/// `Pipe 1st 2nd 3rd`
/// `"numbers" <- 1 2 3`
/// `"strings" <- "hi" "bye" "."`
/// `"bools" <- true false false`
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_branching_inputs<S>(self, pipes: Vec<S>, inputs: Vec<Vec<BoxedAnySend>>) -> Self
where
S: AsRef<str>,
{
let mut iter = inputs.into_iter();
self.with_branching_producer(pipes, move || {
let inputs = iter.next();
async move { inputs.map(|is| is.into_iter().map(Some).collect()) }
})
}
/// A "producer" stage; registers a stage that produces values and writes them into a pipe.
///
/// The strings provided to `pipes` define where each input will go.
///
/// The producer will continue producing values while the user-provided task function returns [Some].
/// This means that it is possible to create an infinite stream of values by simply never returning [None].
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_producer<S, I, F, Fut>(self, pipe: S, mut task: F) -> Self
where
S: AsRef<str>,
I: Send + 'static,
F: FnMut() -> Fut + Send + 'static,
Fut: Future<Output = Option<I>> + Send + 'static,
{
self.with_branching_producer(vec![pipe], move || {
let task_fut = task();
async move {
task_fut
.await
.map(|t| vec![Some(Box::new(t) as BoxedAnySend)])
}
})
}
/// A "producer" stage; registers a new stage that produces multiple values and writes them into their
/// respective pipe.
///
/// The strings provided to `pipes` define where each input will go.
///
/// The producer will continue producing values while the user-provided task function returns [Some].
/// This means that it is possible to create an infinite stream of values by simply never returning [None].
///
/// Each individual [Option] within the task output determines whether it will be sent to the corresponding
/// pipe. If [Some] is specified, the inner value will be sent, if [None] is specified, nothing will be sent.
///
/// As with all stages that have more than one ("branching") outputs, it's possible that each output could
/// have a different type, and so to avoid large binary sizes from static dispatching, dynamic dispatching
/// is used instead, utilizing the [BoxedAnySend] type. For examples on how to return these types of
/// values in task functions, see [BoxedAnySend]'s examples.
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_branching_producer<S, F, Fut>(mut self, pipes: Vec<S>, mut task: F) -> Self
where
S: AsRef<str>,
F: FnMut() -> Fut + Send + 'static,
Fut: Future<Output = Option<Vec<Option<BoxedAnySend>>>> + Send + 'static,
{
let pipes = pipes.iter().map(|p| p.as_ref().to_string()).collect();
self.producer_fns.push(ProducerStage {
function: Box::new(move || Box::pin(task())),
pipes: ProducerPipeNames { writers: pipes },
});
self
}
/// A "consumer" stage; registers a new stage that consumes values from a pipe.
///
/// The string provided to `pipe` define where values will be read from.
///
/// The consumer will continue consuming values until the pipeline is terminated or the pipe it is
/// receiving from is closed.
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_consumer<S, I, F, Fut>(self, pipe: S, task: F) -> Self
where
S: AsRef<str>,
I: Send + 'static,
F: Fn(I) -> Fut + Send + Sync + 'static,
Fut: Future<Output = ()> + Send + 'static,
{
self.with_branching_stage(pipe, vec![], move |value| {
let task_fut = task(value);
async move {
task_fut.await;
Some(Vec::<Option<BoxedAnySend>>::new())
}
})
}
/// A "regular" stage; registers a new stage that operates on an input and produce a single output value
/// that is written to a pipe.
///
/// The string provided to `input_pipe` defines where values will be read from.
/// The string provided to `output_pipe` defines where the produced output will go.
///
/// The worker will continue working on input values until the pipeline is terminated or the pipe it is
/// receiving from is closed.
///
/// The [Option] returned by the task function determines whether it will be sent to the output pipe.
/// If [Some] is specified, the inner value will be sent, if [None] is specified, nothing will be sent.
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_stage<S, I, O, F, Fut>(self, input_pipe: S, output_pipe: S, task: F) -> Self
where
S: AsRef<str>,
I: Send + 'static,
O: Send + 'static,
F: Fn(I) -> Fut + Send + Sync + 'static,
Fut: Future<Output = Option<O>> + Send + 'static,
{
self.with_branching_stage(input_pipe, vec![output_pipe], move |value| {
let task_fut = task(value);
async move {
task_fut
.await
.map(|v| Box::new(v) as BoxedAnySend)
.map(|v| vec![Some(v)])
}
})
}
/// A "regular" stage; registers a new stage that operates on an input and produces multiple values that are
/// written into their respective pipe.
///
/// The string provided to `input_pipe` defines where values will be read from.
/// The strings provided to `output_pipes` define where each produced output will go.
///
/// The worker will continue working on input values until the pipeline is terminated or the pipe it is
/// receiving from is closed.
///
/// * If the user-defined task function returns [None], nothing will be done.
/// * If it returns [Some], the inner value ([Vec<Option<BoxedAnySend>>]) will have the following applied
/// to each output option:
/// * If [Some] is specified, the inner value will be sent to the corresponding pipe.
/// * If [None] is specified, nothing will be sent.
///
/// As with all stages that have more than one ("branching") outputs, it's possible that each output could
/// have a different type, and so to avoid large binary sizes from static dispatching, dynamic dispatching
/// is used instead, utilizing the [BoxedAnySend] type. For examples on how to return these types of
/// values in task functions, see [BoxedAnySend]'s examples.
///
/// # Returns
///
/// This pipeline builder.
///
pub fn with_branching_stage<S, I, F, Fut>(
mut self,
input_pipe: S,
output_pipes: Vec<S>,
task: F,
) -> Self
where
S: AsRef<str>,
I: Send + 'static,
F: Fn(I) -> Fut + Send + Sync + 'static,
Fut: Future<Output = Option<Vec<Option<BoxedAnySend>>>> + Send + 'static,
{
let input_pipe = input_pipe.as_ref().to_string();
let output_pipes = output_pipes
.iter()
.map(|p| p.as_ref().to_string())
.collect();
let err_pipe = input_pipe.clone();
self.task_fns.push(TaskStage {
function: Box::new(move |value: BoxedAnySend| {
let v = value.downcast::<I>().unwrap_or_else(|_| {
panic!(
"failed to downcast input value to {} from pipe '{}'",
type_name::<I>(),
err_pipe
)
});
Box::pin(task(*v))
}),
pipes: TaskPipeNames {
reader: input_pipe,
writers: output_pipes,
},
});
self
}
/// When the pipeline is ready to be built, this is called and will return a pipeline if
/// it was successfully built, otherwise it will return an error describing why it could not be built.
///
/// # Errors
///
/// 1. A pipe was specified as an "output" pipe for a stage and it doesn't exist
/// 2. The reader of a pipe was used more than once
///
pub fn build(self) -> Result<Pipeline, String> {
// Create pipe IDs and register them in the synchronizer
let mut synchronizer = Synchronizer::default();
let ids = self.create_ids(&mut synchronizer);
// Make the synchronizer immutable and the create the actual pipes
let synchronizer = Arc::new(synchronizer);
let mut pipes = self.create_pipes(&synchronizer, ids);
let mut producers = JoinSet::new();
let mut workers = JoinSet::new();
let mut signal_txs = Vec::new();
// Spawn producer workers
for producer in self.producer_fns {
let writers = Self::find_writers(&producer.pipes.writers, &pipes)?;
producers.spawn(Self::new_detached_producer(producer.function, writers));
}
// Spawn task workers
for task in self.task_fns {
let writers = Self::find_writers(&task.pipes.writers, &pipes)?;
let reader_name = &task.pipes.reader;
let reader = Self::find_reader(reader_name, &mut pipes)?;
let (signal_tx, signal_rx) = channel(1);
signal_txs.push(signal_tx);
workers.spawn(Self::new_detached_worker(
task.function,
reader,
writers,
signal_rx,
));
}
Ok(Pipeline {
synchronizer,
producers,
workers,
signal_txs,
})
}
/// IDs are generated from the list of names of all the pipe readers in the task functions.
///
/// This is because for each pipe, there is only reader, but there can be multiple writers.
/// Also, producers do not have a reader, only writers, so we only take from the task functions.
fn create_ids(&self, sync: &mut Synchronizer) -> HashMap<String, String> {
let mut ids = HashMap::new();
for name in self.names() {
let id = new_id();
sync.register(&id);
ids.insert(name.clone(), id);
}
ids
}
/// The reader of a pipe is wrapped in an option to allow the build method to [Option::take] it
/// to maintain the invariant that there's only one reader per pipe.
fn create_pipes(
&self,
sync: &Arc<Synchronizer>,
ids: HashMap<String, String>,
) -> HashMap<String, Pipe<BoxedAnySend>> {
let mut pipes = HashMap::new();
for (name, id) in ids {
let (tx, rx) = channel(10);
pipes.insert(
name,
Pipe {
writer: PipeWriter::new(&id, sync.clone(), tx),
reader: Some(PipeReader::new(&id, sync.clone(), rx)),
},
);
}
pipes
}
fn names(&self) -> Vec<&String> {
let mut names = HashSet::new();
for f in &self.task_fns {
names.insert(&f.pipes.reader);
}
names.into_iter().collect()
}
fn find_writers(
writer_names: &[String],
pipes: &HashMap<String, Pipe<BoxedAnySend>>,
) -> Result<Vec<PipeWriter<BoxedAnySend>>, String> {
let mut writers = Vec::new();
for writer_name in writer_names {
writers.push(Self::find_writer(writer_name, &pipes)?);
}
Ok(writers)
}
fn find_reader(
name: &str,
pipes: &mut HashMap<String, Pipe<BoxedAnySend>>,
) -> Result<PipeReader<BoxedAnySend>, String> {
Ok(pipes
.get_mut(name)
.ok_or(&format!("no pipe with name {} found", name))?
.reader
.take()
.ok_or("reader was already used")?)
}
fn find_writer(
name: &str,
pipes: &HashMap<String, Pipe<BoxedAnySend>>,
) -> Result<PipeWriter<BoxedAnySend>, String> {
Ok(pipes
.get(name)
.ok_or(&format!("no pipe with name {} found", name))?
.writer
.clone())
}
async fn new_detached_producer(
mut producer: ProducerFn,
writers: Vec<PipeWriter<BoxedAnySend>>,
) {
loop {
let writers = writers.clone();
if let Some(results) = (*producer)().await {
write_results(writers, results).await;
} else {
break;
}
}
}
async fn new_detached_worker(
task: TaskFn,
mut reader: PipeReader<BoxedAnySend>,
writers: Vec<PipeWriter<BoxedAnySend>>,
mut signal_rx: Receiver<StageWorkerSignal>,
) {
let mut tasks = JoinSet::new();
loop {
select! {
Some(value) = reader.read() => {
let consumed = reader.consumed_callback();
let writers = writers.clone();
let result = task(value);
tasks.spawn(async move {
if let Some(results) = result.await {
write_results(writers, results).await;
}
// Mark input as consumed *after* writing outputs
// (avoids false positive of completed pipeline)
consumed();
});
}
// Join tasks to check for errors
Some(result) = tasks.join_next(), if !tasks.is_empty() => {
check_join_result(&result);
}
// Receive external signals
Some(signal) = signal_rx.recv() => {
match signal {
StageWorkerSignal::Terminate => break,
StageWorkerSignal::Ping => println!("Pong!"),
}
},
}
}
tasks.shutdown().await;
}
}
/// A pipeline provides the infrastructure for managing a set of workers that operate on and
/// transfer data between them using pipes.
///
/// # Examples
///
/// Creating a single producer and a single consumer.
/// ```
/// use std::sync::Arc;
/// use std::sync::atomic::{AtomicUsize, Ordering};
/// use std::sync::atomic::Ordering::{Acquire, SeqCst};
/// use tokio::sync::Mutex;
/// use async_pipes::Pipeline;
///
/// tokio_test::block_on(async {
/// let count = Arc::new(Mutex::new(0usize));
///
/// let sum = Arc::new(AtomicUsize::new(0));
/// let task_sum = sum.clone();
///
/// Pipeline::builder()
/// // Produce values 1 through 10
/// .with_producer("data", move || {
/// let c = count.clone();
/// async move {
/// let mut c = c.lock().await;
/// if *c < 10 {
/// *c += 1;
/// Some(*c)
/// } else {
/// None
/// }
/// }
/// })
/// .with_consumer("data", move |value: usize| {
/// let ts = task_sum.clone();
/// async move {
/// ts.fetch_add(value, SeqCst);
/// }
/// })
/// .build()
/// .expect("failed to build pipeline")
/// .wait()
/// .await;
///
/// assert_eq!(sum.load(Acquire), 55);
/// });
/// ```
///
/// Creating a branching producer and two consumers for each branch.
/// ```
/// use std::sync::Arc;
/// use std::sync::atomic::{AtomicUsize, Ordering};
/// use std::sync::atomic::Ordering::Acquire;
/// use tokio::sync::Mutex;
/// use async_pipes::{BoxedAnySend, Pipeline};
///
/// tokio_test::block_on(async {
/// let count = Arc::new(Mutex::new(0usize));
///
/// let odds_sum = Arc::new(AtomicUsize::new(0));
/// let task_odds_sum = odds_sum.clone();
///
/// let evens_sum = Arc::new(AtomicUsize::new(0));
/// let task_evens_sum = evens_sum.clone();
///
/// Pipeline::builder()
/// .with_branching_producer(vec!["evens", "odds"], move || {
/// let c = count.clone();
/// async move {
/// let mut c = c.lock().await;
/// if *c >= 10 {
/// return None;
/// }
/// *c += 1;
///
/// let output: Vec<Option<BoxedAnySend>> = if *c % 2 == 0 {
/// vec![Some(Box::new(*c)), None]
/// } else {
/// vec![None, Some(Box::new(*c))]
/// };
///
/// Some(output)
/// }
/// })
/// .with_consumer("odds", move |n: usize| {
/// let odds_sum = task_odds_sum.clone();
/// async move {
/// odds_sum.fetch_add(n, Ordering::SeqCst);
/// }
/// })
/// .with_consumer("evens", move |n: usize| {
/// let evens_sum = task_evens_sum.clone();
/// async move {
/// evens_sum.fetch_add(n, Ordering::SeqCst);
/// }
/// })
/// .build()
/// .expect("failed to build pipeline!")
/// .wait()
/// .await;
///
/// assert_eq!(odds_sum.load(Acquire), 25);
/// assert_eq!(evens_sum.load(Acquire), 30);
/// });
/// ```
#[derive(Debug)]
pub struct Pipeline {
synchronizer: Arc<Synchronizer>,
producers: JoinSet<()>,
workers: JoinSet<()>,
signal_txs: Vec<Sender<StageWorkerSignal>>,
}
impl Pipeline {
/// Create a new pipeline builder.
pub fn builder() -> PipelineBuilder {
PipelineBuilder::default()
}
/// Wait for the pipeline to complete.
///
/// Once the pipeline is complete, a termination signal is sent to to all the workers.
///
/// A pipeline progresses to completion by doing the following:
/// 1. Wait for all "producers" to complete while also progressing stage workers
/// 2. Wait for either all the stage workers to complete, or wait for the internal synchronizer to notify
/// of completion (i.e. there's no more data flowing through the pipeline)
///
/// Step 1 implies that if the producers never finish, the pipeline will run forever. See
/// [Pipeline::register_producer] for more info.
pub async fn wait(mut self) {
let workers_to_progress = Arc::new(Mutex::new(self.workers));
let workers_to_finish = workers_to_progress.clone();
let wait_for_producers = async {
while let Some(result) = self.producers.join_next().await {
check_join_result(&result);
}
};
let wait_for_workers = |workers: Arc<Mutex<JoinSet<()>>>| async move {
while let Some(result) = workers.lock().await.join_next().await {
check_join_result(&result);
}
};
let check_sync_completed = async {
while !self.synchronizer.completed() {
yield_now().await
}
for tx in self.signal_txs {
tx.send(StageWorkerSignal::Terminate)
.await
.expect("failed to send done signal")
}
};
// Effectively, make progress until all producers are done.
// We do this to prevent the synchronizer from causing the pipeline to shutdown too early.
select! {
_ = wait_for_producers => {},
_ = wait_for_workers(workers_to_progress), if !workers_to_progress.lock().await.is_empty() => {},
}
// If either the synchronizer determines we're done, or all workers completed, we're done
select! {
_ = wait_for_workers(workers_to_finish) => {},
_ = check_sync_completed => {},
}
}
}
async fn write_results<O>(writers: Vec<PipeWriter<O>>, results: Vec<Option<O>>) {
for (i, value) in results.into_iter().enumerate() {
if let Some(result) = value {
writers
.get(i)
.expect("len(results) != len(writers)")
.write(result)
.await;
}
}
}
fn check_join_result<T>(result: &Result<T, JoinError>) {
if let Err(e) = result {
if e.is_panic() {
// TODO - figure out to get `select!` to NOT provide a borrowed result
// panic::resume_unwind(e.into_panic())
std::panic!("task panicked!")
}
}
}
#[cfg(test)]
mod tests {
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::{Acquire, Release};
use std::sync::Arc;
use std::time::Duration;
use tokio::join;
use crate::{Pipeline, StageWorkerSignal};
#[tokio::test]
async fn test_stage_producer() {
let written = Arc::new(AtomicBool::new(false));
let task_written = written.clone();
Pipeline::builder()
.with_producer("pipe", move || {
let written = task_written.clone();
async move {
if !written.load(Acquire) {
written.store(true, Release);
Some("hello!".to_string())
} else {
None
}
}
})
.with_consumer("pipe", |value: String| async move {
assert_eq!(value, "hello!".to_string());
})
.build()
.unwrap()
.wait()
.await;
assert!(written.load(Acquire), "value was not handled by worker!");
}
#[tokio::test]
async fn test_stage_single_output() {
let written = Arc::new(AtomicBool::new(false));
let task_written = written.clone();
Pipeline::builder()
.with_inputs("first", vec![1usize])
.with_stage(
"first",
"second",
|value: usize| async move { Some(value + 1) },
)
.with_consumer("second", move |value: usize| {
let written = task_written.clone();
async move {
assert_eq!(value, 2);
written.store(true, Release);
}
})
.build()
.unwrap()
.wait()
.await;
assert!(written.load(Acquire), "value was not handled by worker!");
}
#[tokio::test]
#[should_panic]
async fn test_stage_propagates_task_panic() {
Pipeline::builder()
.with_inputs("pipe", vec![()])
.with_consumer("pipe", |_: ()| async move { panic!("AHH!") })
.build()
.unwrap()
.wait()
.await;
}
#[tokio::test]
async fn test_stage_receives_signal_terminate() {
let pipeline = Pipeline::builder()
.with_inputs("pipe", vec![()])
.with_consumer("pipe", |_: ()| async move {
tokio::time::sleep(Duration::from_secs(1)).await;
panic!("worker did not terminate!");
})
.build()
.unwrap();
let signaller = pipeline.signal_txs.first().unwrap().clone();
let _ = join!(
pipeline.wait(),
signaller.send(StageWorkerSignal::Terminate),
);
}
}