1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
//! Process file descriptors (`pidfd`) for Linux
//! ============================================
//!
//! Process file descriptors (`pidfd`) provide a race-free way to manage processes
//! on Linux, maintaining a persistent reference to a process using a file
//! descriptor rather than a numeric process ID (PID) that could be reused after
//! the process exits.
//!
//! This crate only works on Linux; if you need support for other platforms, or for
//! older Linux kernels, see
//! [async-process](https://crates.io/crates/async-process).
//!
//! `async-pidfd` provides Rust support for pidfd, and supports managing processes
//! both synchronously (via the `PidFd` type) and asynchronously (via the
//! `AsyncPidFd` type).
//!
//! Sync - `PidFd`
//! --------------
//!
//! The `PidFd` type manages processes synchronously.  Use `PidFd::from_pid` to
//! construct a `PidFd` from a process ID, such as from
//! [`Child::id`](https://doc.rust-lang.org/std/process/struct.Child.html#method.id)
//! in the standard library. (Note that the portable `Child::id` function returns
//! process IDs as `u32`, rather than as a `libc::pid_t`, necessitating a cast.)
//!
//! ```rust
//! use std::os::unix::process::ExitStatusExt;
//! use std::process::{Command, ExitStatus};
//!
//! use async_pidfd::PidFd;
//!
//! fn main() -> std::io::Result<()> {
//!     let child = Command::new("/bin/true").spawn()?;
//!     let pidfd = PidFd::from_pid(child.id() as libc::pid_t)?;
//!     let status = pidfd.wait()?.status();
//!     assert_eq!(status.code(), Some(0));
//!
//!     let child = Command::new("/bin/sh").arg("-c").arg("kill -9 $$").spawn()?;
//!     let pidfd = PidFd::from_pid(child.id() as libc::pid_t)?;
//!     let status = pidfd.wait()?.status();
//!     assert_eq!(status.signal(), Some(9));
//!
//!     Ok(())
//! }
//! ```
//!
//! `PidFd::wait` returns information about an exited process via the `ExitInfo`
//! structure. `ExitInfo` includes a `libc::siginfo_t` indicating how the process
//! exited (including the exit code if it exited normally, or the signal if it was
//! killed by a signal), and a `libc::rusage` describing the resource usage of the
//! process and its children. `libc::siginfo_t` has complex semantics; to get a
//! [`std::process::ExitStatus`](https://doc.rust-lang.org/std/process/struct.ExitStatus.html)
//! instead, you can call `.status()` on an `ExitInfo`.
//!
//! Note that while opening the PID for an arbitrary process can potentially race
//! with the exit of that process, opening the PID for a child process that you
//! have not yet waited on is safe, as the process ID will not get reused until you
//! wait on the process (or block `SIGCHLD`).
//!
//! If you only want to use the synchronous `PidFd` type, you can use `async-pidfd`
//! with `default-features = false` in `Cargo.toml` to remove async-related
//! dependencies.
//!
//! Async - `AsyncPidFd`
//! --------------------
//!
//! The `AsyncPidFd` type manages processes asynchronously, based on the
//! [`async-io`](https://docs.rs/async-io/) crate by Stjepan Glavina. `async-io`
//! provides an `Async` wrapper that makes it easy to turn any synchronous type
//! based on a file descriptor into an asynchronous type; the resulting
//! asynchronous code uses `epoll` to wait for all the file descriptors
//! concurrently.
//!
//! `AsyncPidFd` wraps an `Async<PidFd>` and provides the same API as `PidFd`, but
//! with an `async` version of the `wait` function.
//!
//! ```rust
//! use std::os::unix::process::ExitStatusExt;
//! use std::process::{Command, ExitStatus};
//!
//! use async_pidfd::AsyncPidFd;
//! use futures_lite::future;
//!
//! async fn async_spawn_and_status(cmd: &mut Command) -> std::io::Result<ExitStatus> {
//!     let child = cmd.spawn()?;
//!     let pidfd = AsyncPidFd::from_pid(child.id() as libc::pid_t)?;
//!     Ok(pidfd.wait().await?.status())
//! }
//!
//! fn main() -> std::io::Result<()> {
//!     future::block_on(async {
//!         let (status1, status2) = future::try_join(
//!             async_spawn_and_status(&mut Command::new("/bin/true")),
//!             async_spawn_and_status(&mut Command::new("/bin/false")),
//!         )
//!         .await?;
//!         assert_eq!(status1.code(), Some(0));
//!         assert_eq!(status2.code(), Some(1));
//!         Ok(())
//!     })
//! }
//! ```
#![forbid(missing_docs)]

#[cfg(not(target_os = "linux"))]
compile_error!("pidfd only works on Linux");

use std::io;
use std::mem::MaybeUninit;
use std::os::unix::io::{AsRawFd, RawFd};
use std::os::unix::process::ExitStatusExt;
use std::process::ExitStatus;

#[cfg(feature = "async")]
use async_io::Async;

const SYS_PIDFD_OPEN: libc::c_long = 434;

fn syscall_result(ret: libc::c_long) -> io::Result<libc::c_long> {
    if ret == -1 {
        Err(io::Error::last_os_error())
    } else {
        Ok(ret)
    }
}

// pidfd_open sets `O_CLOEXEC` by default, without requiring a flag.
fn pidfd_open(pid: libc::pid_t, flags: libc::c_uint) -> io::Result<RawFd> {
    let ret = syscall_result(unsafe { libc::syscall(SYS_PIDFD_OPEN, pid, flags) })?;
    Ok(ret as RawFd)
}

// Use the raw waitid syscall, which additionally provides the rusage argument.
fn waitid_pidfd(pidfd: RawFd) -> io::Result<(libc::siginfo_t, libc::rusage)> {
    let mut siginfo = MaybeUninit::uninit();
    let mut rusage = MaybeUninit::uninit();
    unsafe {
        syscall_result(libc::syscall(
            libc::SYS_waitid,
            libc::P_PIDFD,
            pidfd,
            siginfo.as_mut_ptr(),
            libc::WEXITED,
            rusage.as_mut_ptr(),
        ))?;
        Ok((siginfo.assume_init(), rusage.assume_init()))
    }
}

/// A process file descriptor.
pub struct PidFd(RawFd);

impl PidFd {
    /// Create a process file descriptor from a PID.
    ///
    /// You can get a process ID from `std::process::Child` by calling `Child::id`.
    ///
    /// As long as this process has not yet waited on the child process, and has not blocked
    /// `SIGCHLD`, the process ID will not get reused, so it does not matter if the child process
    /// has already exited.
    pub fn from_pid(pid: libc::pid_t) -> io::Result<Self> {
        Ok(Self(pidfd_open(pid, 0)?))
    }

    /// Wait for the process to complete.
    pub fn wait(&self) -> io::Result<ExitInfo> {
        let (siginfo, rusage) = waitid_pidfd(self.0)?;
        Ok(ExitInfo { siginfo, rusage })
    }
}

impl Drop for PidFd {
    fn drop(&mut self) {
        unsafe { libc::close(self.0) };
    }
}

impl AsRawFd for PidFd {
    fn as_raw_fd(&self) -> RawFd {
        self.0
    }
}

/// Information about an exited process.
pub struct ExitInfo {
    /// Information about how the process exited.
    pub siginfo: libc::siginfo_t,
    /// Resource usage for the process and its children.
    pub rusage: libc::rusage,
}

impl ExitInfo {
    /// Returns the exit status of the process.
    pub fn status(&self) -> ExitStatus {
        let si_status = unsafe { self.siginfo.si_status() };
        let raw_status = if self.siginfo.si_code == libc::CLD_EXITED {
            si_status << 8
        } else {
            si_status
        };
        ExitStatus::from_raw(raw_status)
    }
}

/// Asynchronous version of `PidFd`.
#[cfg(feature = "async")]
pub struct AsyncPidFd(Async<PidFd>);

#[cfg(feature = "async")]
impl AsyncPidFd {
    /// Create a process file descriptor from a PID.
    ///
    /// You can get a process ID from `std::process::Child` by calling `Child::id`.
    ///
    /// As long as this process has not yet waited on the child process, and has not blocked
    /// `SIGCHLD`, the process ID will not get reused, so it does not matter if the child process
    /// has already exited.
    pub fn from_pid(pid: libc::pid_t) -> io::Result<Self> {
        Ok(Self(Async::new(PidFd::from_pid(pid)?)?))
    }

    /// Wait for the process to complete.
    pub async fn wait(&self) -> io::Result<ExitInfo> {
        self.0.readable().await?;
        self.0.get_ref().wait()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::process::Command;

    fn spawn_and_status(cmd: &mut Command) -> io::Result<ExitStatus> {
        let child = cmd.spawn()?;
        let pidfd = PidFd::from_pid(child.id() as libc::pid_t)?;
        Ok(pidfd.wait()?.status())
    }

    #[test]
    fn test() -> std::io::Result<()> {
        let status = spawn_and_status(&mut Command::new("/bin/true"))?;
        assert_eq!(status.code(), Some(0));
        assert_eq!(status.signal(), None);
        let status = spawn_and_status(&mut Command::new("/bin/false"))?;
        assert_eq!(status.code(), Some(1));
        assert_eq!(status.signal(), None);
        let status = spawn_and_status(Command::new("/bin/sh").arg("-c").arg("kill -9 $$"))?;
        assert_eq!(status.code(), None);
        assert_eq!(status.signal(), Some(9));
        Ok(())
    }

    fn assert_echild(ret: io::Result<ExitInfo>) {
        if let Err(e) = ret {
            assert_eq!(e.raw_os_error(), Some(libc::ECHILD));
        } else {
            panic!("Expected an error!");
        }
    }

    #[test]
    fn test_wait_twice() -> std::io::Result<()> {
        let child = Command::new("/bin/true").spawn()?;
        let pidfd = PidFd::from_pid(child.id() as libc::pid_t)?;
        let status = pidfd.wait()?.status();
        assert!(status.success());
        let ret = pidfd.wait();
        assert_echild(ret);
        Ok(())
    }

    #[cfg(feature = "async")]
    async fn async_spawn_and_status(cmd: &mut Command) -> io::Result<ExitStatus> {
        let child = cmd.spawn()?;
        let pidfd = AsyncPidFd::from_pid(child.id() as libc::pid_t)?;
        Ok(pidfd.wait().await?.status())
    }

    #[cfg(feature = "async")]
    #[test]
    fn test_async() -> std::io::Result<()> {
        use futures_lite::future;
        future::block_on(async {
            let (status1, status2) = future::try_join(
                async_spawn_and_status(&mut Command::new("/bin/true")),
                async_spawn_and_status(&mut Command::new("/bin/false")),
            )
            .await?;
            assert_eq!(status1.code(), Some(0));
            assert_eq!(status2.code(), Some(1));
            Ok(())
        })
    }

    #[cfg(feature = "async")]
    #[test]
    fn test_async_concurrent() -> std::io::Result<()> {
        use futures_lite::future::{self, FutureExt};
        future::block_on(async {
            let status = async_spawn_and_status(
                Command::new("/bin/sh")
                    .arg("-c")
                    .arg("read line")
                    .stdin(std::process::Stdio::piped()),
            )
            .or(async_spawn_and_status(&mut Command::new("/bin/false")))
            .await?;
            assert_eq!(status.code(), Some(1));
            Ok(())
        })
    }

    #[cfg(feature = "async")]
    #[test]
    fn test_async_wait_twice() -> std::io::Result<()> {
        futures_lite::future::block_on(async {
            let child = Command::new("/bin/true").spawn()?;
            let pidfd = AsyncPidFd::from_pid(child.id() as libc::pid_t)?;
            let status = pidfd.wait().await?.status();
            assert!(status.success());
            let ret = pidfd.wait().await;
            assert_echild(ret);
            Ok(())
        })
    }
}