1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
//! This crate provides an asynchronous, atomic `Option` type.
//!
//! At a high level, this crate is exactly like `Arc<Mutex<Option<T>>>`, except with support for
//! asynchronous operations. Given an [`Aption<T>`], you can call [`poll_put`] to attempt to place
//! a value into the `Option`, or `poll_take` to take a value out of the `Option`. Both methods
//! will return `Async::NotReady` if the `Option` is occupied or empty respectively, and will at
//! that point have scheduled for the current task to be notified when the `poll_*` call may
//! succeed in the future. `Aption<T>` can also be used as a `Sink<SinkItem = T>` and `Stream<Item
//! = T>` by effectively operating as a single-element channel.
//!
//! An `Aption<T>` can also be closed using [`poll_close`]. Any `poll_put` after a `poll_close`
//! will fail, and the next `poll_take` will return the current value (if any), and from then on
//! `poll_take` will return an error.
//!
//!   [`Aption<T>`]: struct.Aption.html
//!   [`poll_put`]: struct.Aption.html#method.poll_put
//!   [`poll_take`]: struct.Aption.html#method.poll_take
//!   [`poll_close`]: struct.Aption.html#method.poll_close

#![deny(
    unused_extern_crates,
    missing_debug_implementations,
    missing_docs,
    unreachable_pub
)]
#![cfg_attr(test, deny(warnings))]

use futures::{task, try_ready, Async, AsyncSink, Future, Poll, Sink, StartSend, Stream};
use std::cell::UnsafeCell;
use std::sync::Arc;
use std::{fmt, mem};
use tokio_sync::semaphore;

/// Indicates that an [`Aption`] has been closed, and no further operations are available on it.
///
///   [`Aption`]: struct.Aption.html
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct Closed;

/// An asynchronous, atomic `Option` type.
///
/// See the [crate-level documentation] for details.
///
///   [crate-level documentation]: ../
#[derive(Debug)]
pub struct Aption<T> {
    inner: Arc<Inner<T>>,
    permit: semaphore::Permit,
}

impl<T> Clone for Aption<T> {
    fn clone(&self) -> Self {
        Aption {
            inner: self.inner.clone(),
            permit: semaphore::Permit::new(),
        }
    }
}

#[allow(missing_docs)]
pub fn new<T>() -> Aption<T> {
    let m = Arc::new(Inner {
        semaphore: semaphore::Semaphore::new(1),
        value: UnsafeCell::new(CellValue::None),
        put_task: task::AtomicTask::new(),
        take_task: task::AtomicTask::new(),
    });

    Aption {
        inner: m.clone(),
        permit: semaphore::Permit::new(),
    }
}

enum CellValue<T> {
    Some(T),
    None,
    Fin(Option<T>),
}

impl<T> CellValue<T> {
    fn is_none(&self) -> bool {
        if let CellValue::None = *self {
            true
        } else {
            false
        }
    }

    fn take(&mut self) -> Option<T> {
        match mem::replace(self, CellValue::None) {
            CellValue::None => None,
            CellValue::Some(t) => Some(t),
            CellValue::Fin(f) => {
                // retore Fin bit
                mem::replace(self, CellValue::Fin(None));
                f
            }
        }
    }
}

struct Inner<T> {
    semaphore: semaphore::Semaphore,
    value: UnsafeCell<CellValue<T>>,
    put_task: task::AtomicTask,
    take_task: task::AtomicTask,
}

// we never expose &T, only ever &mut T, so we only require T: Send
unsafe impl<T: Send> Sync for Inner<T> {}
unsafe impl<T: Send> Send for Inner<T> {}

impl<T> fmt::Debug for Inner<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "AptionInner")
    }
}

struct TakeFuture<T>(Option<Aption<T>>);
impl<T> Future for TakeFuture<T> {
    type Item = (Aption<T>, T);
    type Error = Closed;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let t = try_ready!(self
            .0
            .as_mut()
            .expect("called poll after future resolved")
            .poll_take());
        Ok(Async::Ready((self.0.take().unwrap(), t)))
    }
}

struct PutFuture<T>(Option<Aption<T>>, Option<T>);
impl<T> Future for PutFuture<T> {
    type Item = Aption<T>;
    type Error = T;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        let t = self.1.take().expect("called poll after future resolved");
        match self
            .0
            .as_mut()
            .expect("called poll after future resolved")
            .poll_put(t)
        {
            Ok(AsyncSink::Ready) => Ok(Async::Ready(self.0.take().unwrap())),
            Ok(AsyncSink::NotReady(t)) => {
                self.1 = Some(t);
                Ok(Async::NotReady)
            }
            Err(t) => Err(t),
        }
    }
}

impl<T> Aption<T> {
    /// Returns a `Future` that resolves when a value is successfully taken from the `Aption<T>`.
    pub fn take(self) -> impl Future<Item = (Self, T), Error = Closed> {
        TakeFuture(Some(self))
    }

    /// Returns a `Future` that resolves when the given value is successfully placed in the
    /// `Aption<T>`.
    pub fn put(self, t: T) -> impl Future<Item = Self, Error = T> {
        PutFuture(Some(self), Some(t))
    }
}

impl<T> Aption<T> {
    /// Attempt to take the value contained in the `Aption`.
    ///
    /// Returns `NotReady` if no value is available, and schedules the current task to be woken up
    /// when one might be.
    ///
    /// Returns an error if the `Aption` has been closed with `Aption::poll_close`.
    pub fn poll_take(&mut self) -> Poll<T, Closed> {
        try_ready!(self
            .permit
            .poll_acquire(&self.inner.semaphore)
            .map_err(|_| unreachable!("semaphore dropped while we have an Arc to it")));

        // we have the lock -- is there a value?
        let value = unsafe { &mut *self.inner.value.get() };

        let v = value.take();
        if v.is_none() {
            // no, sadly not...
            // has it been closed altogether?
            if let CellValue::Fin(None) = *value {
                // it has! nothing more to do except release the permit
                // don't even have to wake anyone up, since we didn't take anything
                self.permit.release(&self.inner.semaphore);
                return Err(Closed);
            }

            // we're going to have to wait for someone to put a value.
            // we need to do this _before_ releasing the lock,
            // otherwise we might miss a quick notify.
            self.inner.take_task.register();
        }

        // give up the lock for someone to put
        self.permit.release(&self.inner.semaphore);

        if let Some(t) = v {
            // let waiting putters know that they can now put
            self.inner.put_task.notify();
            Ok(Async::Ready(t))
        } else {
            Ok(Async::NotReady)
        }
    }

    /// Attempt to put a value into the `Aption`.
    ///
    /// Returns `NotReady` if there's already a value there, and schedules the current task to be
    /// woken up when the `Aption` is free again.
    ///
    /// Returns an error if the `Aption` has been closed with `Aption::poll_close`.
    pub fn poll_put(&mut self, t: T) -> Result<AsyncSink<T>, T> {
        match self.permit.poll_acquire(&self.inner.semaphore) {
            Ok(Async::Ready(())) => {}
            Ok(Async::NotReady) => {
                return Ok(AsyncSink::NotReady(t));
            }
            Err(_) => {
                unreachable!("semaphore dropped while we have an Arc to it");
            }
        }

        // we have the lock!
        let value = unsafe { &mut *self.inner.value.get() };

        // has the channel already been closed?
        if let CellValue::Fin(_) = *value {
            // it has, so we're not going to get to send our value
            // we do have to release the lock though
            self.permit.release(&self.inner.semaphore);
            return Err(t);
        }

        // is there already a value there?
        if value.is_none() {
            // no, we're home free!
            *value = CellValue::Some(t);

            // give up the lock so someone can take
            self.permit.release(&self.inner.semaphore);

            // and notify any waiting takers
            self.inner.take_task.notify();

            Ok(AsyncSink::Ready)
        } else {
            // yes, sadly, so we can't put...

            // we're going to have to wait for someone to take the existing value.
            // we need to do this _before_ releasing the lock,
            // otherwise we might miss a quick notify.
            self.inner.put_task.register();

            // give up the lock so someone can take
            self.permit.release(&self.inner.semaphore);

            Ok(AsyncSink::NotReady(t))
        }
    }

    /// Indicate the `Aption` as closed so that no future puts are permitted.
    ///
    /// Once this method succeeds, every subsequent call to `Aption::poll_put` will return an
    /// error. If there is currently a value in the `Aption`, the next call to `Aption::poll_take`
    /// will return that value. Any later calls to `Aption::poll_take` will return an error.
    pub fn poll_close(&mut self) -> Poll<(), ()> {
        try_ready!(self
            .permit
            .poll_acquire(&self.inner.semaphore)
            .map_err(|_| unreachable!("semaphore dropped while we have an Arc to it")));

        // we have the lock -- wrap whatever value is there in Fin
        let value = unsafe { &mut *self.inner.value.get() };
        let v = value.take();
        *value = CellValue::Fin(v);

        // if the value is None, we've closed successfully!
        let ret = if let CellValue::Fin(None) = *value {
            Async::Ready(())
        } else {
            // otherwise, we'll have to wait for someone to take
            // and again, *before* we release the lock
            self.inner.put_task.register();
            Async::NotReady
        };

        // give up the lock so someone can take
        self.permit.release(&self.inner.semaphore);

        // and notify any waiting takers
        self.inner.take_task.notify();

        Ok(ret)
    }
}

impl<T> Sink for Aption<T> {
    type SinkItem = T;
    type SinkError = T;

    fn start_send(&mut self, item: Self::SinkItem) -> StartSend<Self::SinkItem, Self::SinkError> {
        self.poll_put(item)
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        self.poll_close()
            .map_err(|_| unreachable!("failed to close because already closed elsewhere"))
    }
}

impl<T> Stream for Aption<T> {
    type Item = T;
    type Error = ();

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        match self.poll_take() {
            Ok(Async::Ready(v)) => Ok(Async::Ready(Some(v))),
            Ok(Async::NotReady) => Ok(Async::NotReady),
            Err(Closed) => {
                // error on take just means it's been closed
                Ok(Async::Ready(None))
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use tokio_mock_task::MockTask;

    #[test]
    fn basic() {
        let mut mt = MockTask::new();

        let mut a = new::<usize>();
        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::NotReady));
        assert!(!mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_put(42)), Ok(AsyncSink::Ready));
        assert!(mt.is_notified()); // taker is notified
        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::Ready(42)));

        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::NotReady));
        assert!(!mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_put(43)), Ok(AsyncSink::Ready));
        assert!(mt.is_notified()); // taker is notified
        assert_eq!(mt.enter(|| a.poll_put(44)), Ok(AsyncSink::NotReady(44)));
        assert!(!mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::Ready(43)));
        assert!(mt.is_notified()); // putter is notified
        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::NotReady));
        assert!(!mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_put(44)), Ok(AsyncSink::Ready));
        assert!(mt.is_notified());

        // close fails since there's still a message to be sent
        assert_eq!(mt.enter(|| a.poll_close()), Ok(Async::NotReady));
        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::Ready(44)));
        assert!(mt.is_notified()); // closer is notified
        assert_eq!(mt.enter(|| a.poll_close()), Ok(Async::Ready(())));
        assert!(!mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_take()), Err(Closed));
    }

    #[test]
    fn sink_stream() {
        use tokio::prelude::*;

        let a = new::<usize>();
        let (mut tx, rx) = tokio_sync::mpsc::unbounded_channel();
        tokio::run(future::lazy(move || {
            tokio::spawn(
                rx.forward(a.clone().sink_map_err(|_| unreachable!()))
                    .map(|_| ())
                    .map_err(|_| unreachable!()),
            );

            // send a bunch of things, and make sure we get them all
            tx.try_send(1).unwrap();
            tx.try_send(2).unwrap();
            tx.try_send(3).unwrap();
            tx.try_send(4).unwrap();
            tx.try_send(5).unwrap();
            drop(tx);

            a.collect()
                .inspect(|v| {
                    assert_eq!(v, &[1, 2, 3, 4, 5]);
                })
                .map(|_| ())
        }));
    }

    #[test]
    fn futures() {
        use tokio::prelude::*;

        let a = new::<usize>();
        tokio::run(future::lazy(move || {
            a.put(42)
                .map_err(|_| unreachable!())
                .and_then(|a| a.take())
                .map_err(|_| unreachable!())
                .and_then(|(a, v)| {
                    assert_eq!(v, 42);
                    a.put(43)
                })
                .map_err(|_| unreachable!())
                .and_then(|a| a.take())
                .map_err(|_| unreachable!())
                .inspect(|(_, v)| {
                    assert_eq!(*v, 43);
                })
                .map(|_| ())
        }));
    }

    #[test]
    fn notified_on_empty_drop() {
        let mut mt = MockTask::new();

        let mut a = new::<usize>();
        assert_eq!(mt.enter(|| a.poll_take()), Ok(Async::NotReady));
        assert!(!mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_close()), Ok(Async::Ready(())));
        assert!(mt.is_notified());
        assert_eq!(mt.enter(|| a.poll_take()), Err(Closed));
    }
}