async_openai/types/fine_tuning.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
use derive_builder::Builder;
use serde::{Deserialize, Serialize};
use crate::error::OpenAIError;
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum NEpochs {
NEpochs(u8),
#[default]
#[serde(rename = "auto")]
Auto,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum BatchSize {
BatchSize(u16),
#[default]
#[serde(rename = "auto")]
Auto,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum LearningRateMultiplier {
LearningRateMultiplier(f32),
#[default]
#[serde(rename = "auto")]
Auto,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
pub struct Hyperparameters {
/// Number of examples in each batch. A larger batch size means that model parameters
/// are updated less frequently, but with lower variance.
pub batch_size: BatchSize,
/// Scaling factor for the learning rate. A smaller learning rate may be useful to avoid
/// overfitting.
pub learning_rate_multiplier: LearningRateMultiplier,
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
pub n_epochs: NEpochs,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuningJobRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuningJobRequest {
/// The name of the model to fine-tune. You can select one of the
/// [supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
pub model: String,
/// The ID of an uploaded file that contains training data.
///
/// See [upload file](https://platform.openai.com/docs/api-reference/files/create) for how to upload a file.
///
/// Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
///
/// The contents of the file should differ depending on if the model uses the [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) format.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
pub training_file: String,
/// The hyperparameters used for the fine-tuning job.
pub hyperparameters: Option<Hyperparameters>,
/// A string of up to 18 characters that will be added to your fine-tuned model name.
///
/// For example, a `suffix` of "custom-model-name" would produce a model name
/// like `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null, minLength:1, maxLength:40
/// The ID of an uploaded file that contains validation data.
///
/// If you provide this file, the data is used to generate validation
/// metrics periodically during fine-tuning. These metrics can be viewed in
/// the fine-tuning results file.
/// The same data should not be present in both train and validation files.
///
/// Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
#[serde(skip_serializing_if = "Option::is_none")]
pub validation_file: Option<String>,
/// A list of integrations to enable for your fine-tuning job.
#[serde(skip_serializing_if = "Option::is_none")]
pub integrations: Option<Vec<FineTuningIntegration>>,
/// The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases.
/// If a seed is not specified, one will be generated for you.
#[serde(skip_serializing_if = "Option::is_none")]
pub seed: Option<u32>, // min:0, max: 2147483647
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize, Default)]
#[serde(rename_all = "lowercase")]
pub enum FineTuningJobIntegrationType {
#[default]
Wandb,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningIntegration {
/// The type of integration to enable. Currently, only "wandb" (Weights and Biases) is supported.
pub r#type: FineTuningJobIntegrationType,
/// The settings for your integration with Weights and Biases. This payload specifies the project that
/// metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags
/// to your run, and set a default entity (team, username, etc) to be associated with your run.
pub wandb: WandB,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct WandB {
/// The name of the project that the new run will be created under.
pub project: String,
/// A display name to set for the run. If not set, we will use the Job ID as the name.
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>,
/// The entity to use for the run. This allows you to set the team or username of the WandB user that you would
/// like associated with the run. If not set, the default entity for the registered WandB API key is used.
#[serde(skip_serializing_if = "Option::is_none")]
pub entity: Option<String>,
/// A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some
/// default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
#[serde(skip_serializing_if = "Option::is_none")]
pub tags: Option<Vec<String>>,
}
/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneJobError {
/// A machine-readable error code.
pub code: String,
/// A human-readable error message.
pub message: String,
/// The parameter that was invalid, usually `training_file` or `validation_file`.
/// This field will be null if the failure was not parameter-specific.
pub param: Option<String>, // nullable true
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FineTuningJobStatus {
ValidatingFiles,
Queued,
Running,
Succeeded,
Failed,
Cancelled,
}
/// The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningJob {
/// The object identifier, which can be referenced in the API endpoints.
pub id: String,
/// The Unix timestamp (in seconds) for when the fine-tuning job was created.
pub created_at: u32,
/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
pub error: Option<FineTuneJobError>,
/// The name of the fine-tuned model that is being created.
/// The value will be null if the fine-tuning job is still running.
pub fine_tuned_model: Option<String>, // nullable: true
/// The Unix timestamp (in seconds) for when the fine-tuning job was finished.
/// The value will be null if the fine-tuning job is still running.
pub finished_at: Option<u32>, // nullable true
/// The hyperparameters used for the fine-tuning job.
/// See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
pub hyperparameters: Hyperparameters,
/// The base model that is being fine-tuned.
pub model: String,
/// The object type, which is always "fine_tuning.job".
pub object: String,
/// The organization that owns the fine-tuning job.
pub organization_id: String,
/// The compiled results file ID(s) for the fine-tuning job.
/// You can retrieve the results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub result_files: Vec<String>,
/// The current status of the fine-tuning job, which can be either
/// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
pub status: FineTuningJobStatus,
/// The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
pub trained_tokens: Option<u32>,
/// The file ID used for training. You can retrieve the training data with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub training_file: String,
/// The file ID used for validation. You can retrieve the validation results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub validation_file: Option<String>,
/// A list of integrations to enable for this fine-tuning job.
pub integrations: Option<Vec<FineTuningIntegration>>, // maxItems: 5
/// The seed used for the fine-tuning job.
pub seed: u32,
/// The Unix timestamp (in seconds) for when the fine-tuning job is estimated to finish. The value will be null if the fine-tuning job is not running.
pub estimated_finish: Option<u32>,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListPaginatedFineTuningJobsResponse {
pub data: Vec<FineTuningJob>,
pub has_more: bool,
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobEventsResponse {
pub data: Vec<FineTuningJobEvent>,
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobCheckpointsResponse {
pub data: Vec<FineTuningJobCheckpoint>,
pub object: String,
pub first_id: Option<String>,
pub last_id: Option<String>,
pub has_more: bool,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Level {
Info,
Warn,
Error,
}
///Fine-tuning job event object
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobEvent {
pub id: String,
pub created_at: u32,
pub level: Level,
pub message: String,
pub object: String,
}
/// The `fine_tuning.job.checkpoint` object represents a model checkpoint for a fine-tuning job that is ready to use.
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobCheckpoint {
/// The checkpoint identifier, which can be referenced in the API endpoints.
pub id: String,
/// The Unix timestamp (in seconds) for when the checkpoint was created.
pub created_at: u32,
/// The name of the fine-tuned checkpoint model that is created.
pub fine_tuned_model_checkpoint: String,
/// The step number that the checkpoint was created at.
pub step_number: u32,
/// Metrics at the step number during the fine-tuning job.
pub metrics: FineTuningJobCheckpointMetrics,
/// The name of the fine-tuning job that this checkpoint was created from.
pub fine_tuning_job_id: String,
/// The object type, which is always "fine_tuning.job.checkpoint".
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobCheckpointMetrics {
pub step: u32,
pub train_loss: f32,
pub train_mean_token_accuracy: f32,
pub valid_loss: f32,
pub valid_mean_token_accuracy: f32,
pub full_valid_loss: f32,
pub full_valid_mean_token_accuracy: f32,
}