async_openai/types/
fine_tuning.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use derive_builder::Builder;
use serde::{Deserialize, Serialize};

use crate::error::OpenAIError;

#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum NEpochs {
    NEpochs(u8),
    #[default]
    #[serde(rename = "auto")]
    Auto,
}

#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum BatchSize {
    BatchSize(u16),
    #[default]
    #[serde(rename = "auto")]
    Auto,
}

#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum LearningRateMultiplier {
    LearningRateMultiplier(f32),
    #[default]
    #[serde(rename = "auto")]
    Auto,
}

#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
pub struct Hyperparameters {
    /// Number of examples in each batch. A larger batch size means that model parameters
    /// are updated less frequently, but with lower variance.
    pub batch_size: BatchSize,
    /// Scaling factor for the learning rate. A smaller learning rate may be useful to avoid
    /// overfitting.
    pub learning_rate_multiplier: LearningRateMultiplier,
    /// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
    pub n_epochs: NEpochs,
}

#[derive(Debug, Serialize, Deserialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuningJobRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuningJobRequest {
    /// The name of the model to fine-tune. You can select one of the
    /// [supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
    pub model: String,

    /// The ID of an uploaded file that contains training data.
    ///
    /// See [upload file](https://platform.openai.com/docs/api-reference/files/create) for how to upload a file.
    ///
    /// Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
    ///
    /// The contents of the file should differ depending on if the model uses the [chat](https://platform.openai.com/docs/api-reference/fine-tuning/chat-input) or [completions](https://platform.openai.com/docs/api-reference/fine-tuning/completions-input) format.
    ///
    /// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
    pub training_file: String,

    /// The hyperparameters used for the fine-tuning job.
    pub hyperparameters: Option<Hyperparameters>,

    /// A string of up to 18 characters that will be added to your fine-tuned model name.
    ///
    /// For example, a `suffix` of "custom-model-name" would produce a model name
    /// like `ft:gpt-4o-mini:openai:custom-model-name:7p4lURel`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub suffix: Option<String>, // default: null, minLength:1, maxLength:40

    /// The ID of an uploaded file that contains validation data.
    ///
    /// If you provide this file, the data is used to generate validation
    /// metrics periodically during fine-tuning. These metrics can be viewed in
    /// the fine-tuning results file.
    /// The same data should not be present in both train and validation files.
    ///
    /// Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
    ///
    /// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_file: Option<String>,

    /// A list of integrations to enable for your fine-tuning job.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub integrations: Option<Vec<FineTuningIntegration>>,

    /// The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases.
    /// If a seed is not specified, one will be generated for you.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub seed: Option<u32>, // min:0, max: 2147483647
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize, Default)]
#[serde(rename_all = "lowercase")]
pub enum FineTuningJobIntegrationType {
    #[default]
    Wandb,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningIntegration {
    /// The type of integration to enable. Currently, only "wandb" (Weights and Biases) is supported.
    pub r#type: FineTuningJobIntegrationType,

    /// The settings for your integration with Weights and Biases. This payload specifies the project that
    /// metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags
    /// to your run, and set a default entity (team, username, etc) to be associated with your run.
    pub wandb: WandB,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct WandB {
    /// The name of the project that the new run will be created under.
    pub project: String,
    /// A display name to set for the run. If not set, we will use the Job ID as the name.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// The entity to use for the run. This allows you to set the team or username of the WandB user that you would
    /// like associated with the run. If not set, the default entity for the registered WandB API key is used.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub entity: Option<String>,
    /// A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some
    /// default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<String>>,
}

/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneJobError {
    ///  A machine-readable error code.
    pub code: String,
    ///  A human-readable error message.
    pub message: String,
    /// The parameter that was invalid, usually `training_file` or `validation_file`.
    /// This field will be null if the failure was not parameter-specific.
    pub param: Option<String>, // nullable true
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FineTuningJobStatus {
    ValidatingFiles,
    Queued,
    Running,
    Succeeded,
    Failed,
    Cancelled,
}

/// The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningJob {
    /// The object identifier, which can be referenced in the API endpoints.
    pub id: String,
    /// The Unix timestamp (in seconds) for when the fine-tuning job was created.
    pub created_at: u32,
    /// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
    pub error: Option<FineTuneJobError>,
    /// The name of the fine-tuned model that is being created.
    /// The value will be null if the fine-tuning job is still running.
    pub fine_tuned_model: Option<String>, // nullable: true
    /// The Unix timestamp (in seconds) for when the fine-tuning job was finished.
    /// The value will be null if the fine-tuning job is still running.
    pub finished_at: Option<u32>, // nullable true

    /// The hyperparameters used for the fine-tuning job.
    /// See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
    pub hyperparameters: Hyperparameters,

    ///  The base model that is being fine-tuned.
    pub model: String,

    /// The object type, which is always "fine_tuning.job".
    pub object: String,
    /// The organization that owns the fine-tuning job.
    pub organization_id: String,

    /// The compiled results file ID(s) for the fine-tuning job.
    /// You can retrieve the results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
    pub result_files: Vec<String>,

    /// The current status of the fine-tuning job, which can be either
    /// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
    pub status: FineTuningJobStatus,

    /// The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
    pub trained_tokens: Option<u32>,

    /// The file ID used for training. You can retrieve the training data with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
    pub training_file: String,

    ///  The file ID used for validation. You can retrieve the validation results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
    pub validation_file: Option<String>,

    /// A list of integrations to enable for this fine-tuning job.
    pub integrations: Option<Vec<FineTuningIntegration>>, // maxItems: 5

    /// The seed used for the fine-tuning job.
    pub seed: u32,

    /// The Unix timestamp (in seconds) for when the fine-tuning job is estimated to finish. The value will be null if the fine-tuning job is not running.
    pub estimated_finish: Option<u32>,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListPaginatedFineTuningJobsResponse {
    pub data: Vec<FineTuningJob>,
    pub has_more: bool,
    pub object: String,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobEventsResponse {
    pub data: Vec<FineTuningJobEvent>,
    pub object: String,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobCheckpointsResponse {
    pub data: Vec<FineTuningJobCheckpoint>,
    pub object: String,
    pub first_id: Option<String>,
    pub last_id: Option<String>,
    pub has_more: bool,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Level {
    Info,
    Warn,
    Error,
}

///Fine-tuning job event object
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobEvent {
    pub id: String,
    pub created_at: u32,
    pub level: Level,
    pub message: String,
    pub object: String,
}

/// The `fine_tuning.job.checkpoint` object represents a model checkpoint for a fine-tuning job that is ready to use.
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobCheckpoint {
    /// The checkpoint identifier, which can be referenced in the API endpoints.
    pub id: String,
    /// The Unix timestamp (in seconds) for when the checkpoint was created.
    pub created_at: u32,
    /// The name of the fine-tuned checkpoint model that is created.
    pub fine_tuned_model_checkpoint: String,
    /// The step number that the checkpoint was created at.
    pub step_number: u32,
    /// Metrics at the step number during the fine-tuning job.
    pub metrics: FineTuningJobCheckpointMetrics,
    /// The name of the fine-tuning job that this checkpoint was created from.
    pub fine_tuning_job_id: String,
    /// The object type, which is always "fine_tuning.job.checkpoint".
    pub object: String,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobCheckpointMetrics {
    pub step: u32,
    pub train_loss: f32,
    pub train_mean_token_accuracy: f32,
    pub valid_loss: f32,
    pub valid_mean_token_accuracy: f32,
    pub full_valid_loss: f32,
    pub full_valid_mean_token_accuracy: f32,
}