1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use crate::{
    config::Config,
    error::OpenAIError,
    types::{
        CreateBase64EmbeddingResponse, CreateEmbeddingRequest, CreateEmbeddingResponse,
        EncodingFormat,
    },
    Client,
};

/// Get a vector representation of a given input that can be easily
/// consumed by machine learning models and algorithms.
///
/// Related guide: [Embeddings](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings)
pub struct Embeddings<'c, C: Config> {
    client: &'c Client<C>,
}

impl<'c, C: Config> Embeddings<'c, C> {
    pub fn new(client: &'c Client<C>) -> Self {
        Self { client }
    }

    /// Creates an embedding vector representing the input text.
    pub async fn create(
        &self,
        request: CreateEmbeddingRequest,
    ) -> Result<CreateEmbeddingResponse, OpenAIError> {
        if matches!(request.encoding_format, Some(EncodingFormat::Base64)) {
            return Err(OpenAIError::InvalidArgument(
                "When encoding_format is base64, use Embeddings::create_base64".into(),
            ));
        }
        self.client.post("/embeddings", request).await
    }

    /// Creates an embedding vector representing the input text.
    ///
    /// The response will contain the embedding in base64 format.
    pub async fn create_base64(
        &self,
        request: CreateEmbeddingRequest,
    ) -> Result<CreateBase64EmbeddingResponse, OpenAIError> {
        if !matches!(request.encoding_format, Some(EncodingFormat::Base64)) {
            return Err(OpenAIError::InvalidArgument(
                "When encoding_format is not base64, use Embeddings::create".into(),
            ));
        }

        self.client.post("/embeddings", request).await
    }
}

#[cfg(test)]
mod tests {
    use crate::error::OpenAIError;
    use crate::types::{CreateEmbeddingResponse, Embedding, EncodingFormat};
    use crate::{types::CreateEmbeddingRequestArgs, Client};

    #[tokio::test]
    async fn test_embedding_string() {
        let client = Client::new();

        let request = CreateEmbeddingRequestArgs::default()
            .model("text-embedding-ada-002")
            .input("The food was delicious and the waiter...")
            .build()
            .unwrap();

        let response = client.embeddings().create(request).await;

        assert!(response.is_ok());
    }

    #[tokio::test]
    async fn test_embedding_string_array() {
        let client = Client::new();

        let request = CreateEmbeddingRequestArgs::default()
            .model("text-embedding-ada-002")
            .input(["The food was delicious", "The waiter was good"])
            .build()
            .unwrap();

        let response = client.embeddings().create(request).await;

        assert!(response.is_ok());
    }

    #[tokio::test]
    async fn test_embedding_integer_array() {
        let client = Client::new();

        let request = CreateEmbeddingRequestArgs::default()
            .model("text-embedding-ada-002")
            .input([1, 2, 3])
            .build()
            .unwrap();

        let response = client.embeddings().create(request).await;

        assert!(response.is_ok());
    }

    #[tokio::test]
    async fn test_embedding_array_of_integer_array_matrix() {
        let client = Client::new();

        let request = CreateEmbeddingRequestArgs::default()
            .model("text-embedding-ada-002")
            .input([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
            .build()
            .unwrap();

        let response = client.embeddings().create(request).await;

        assert!(response.is_ok());
    }

    #[tokio::test]
    async fn test_embedding_array_of_integer_array() {
        let client = Client::new();

        let request = CreateEmbeddingRequestArgs::default()
            .model("text-embedding-ada-002")
            .input([vec![1, 2, 3], vec![4, 5, 6, 7], vec![7, 8, 10, 11, 100257]])
            .build()
            .unwrap();

        let response = client.embeddings().create(request).await;

        assert!(response.is_ok());
    }

    #[tokio::test]
    async fn test_embedding_with_reduced_dimensions() {
        let client = Client::new();
        let dimensions = 256u32;
        let request = CreateEmbeddingRequestArgs::default()
            .model("text-embedding-3-small")
            .input("The food was delicious and the waiter...")
            .dimensions(dimensions)
            .build()
            .unwrap();

        let response = client.embeddings().create(request).await;

        assert!(response.is_ok());

        let CreateEmbeddingResponse { mut data, .. } = response.unwrap();
        assert_eq!(data.len(), 1);
        let Embedding { embedding, .. } = data.pop().unwrap();
        assert_eq!(embedding.len(), dimensions as usize);
    }

    #[tokio::test]
    async fn test_cannot_use_base64_encoding_with_normal_create_request() {
        let client = Client::new();

        const MODEL: &str = "text-embedding-ada-002";
        const INPUT: &str = "You shall not pass.";

        let b64_request = CreateEmbeddingRequestArgs::default()
            .model(MODEL)
            .input(INPUT)
            .encoding_format(EncodingFormat::Base64)
            .build()
            .unwrap();
        let b64_response = client.embeddings().create(b64_request).await;
        assert!(matches!(b64_response, Err(OpenAIError::InvalidArgument(_))));
    }

    #[tokio::test]
    async fn test_embedding_create_base64() {
        let client = Client::new();

        const MODEL: &str = "text-embedding-ada-002";
        const INPUT: &str = "CoLoop will eat the other qual research tools...";

        let b64_request = CreateEmbeddingRequestArgs::default()
            .model(MODEL)
            .input(INPUT)
            .encoding_format(EncodingFormat::Base64)
            .build()
            .unwrap();
        let b64_response = client
            .embeddings()
            .create_base64(b64_request)
            .await
            .unwrap();
        let b64_embedding = b64_response.data.into_iter().next().unwrap().embedding;
        let b64_embedding: Vec<f32> = b64_embedding.into();

        let request = CreateEmbeddingRequestArgs::default()
            .model(MODEL)
            .input(INPUT)
            .build()
            .unwrap();
        let response = client.embeddings().create(request).await.unwrap();
        let embedding = response.data.into_iter().next().unwrap().embedding;

        assert_eq!(b64_embedding.len(), embedding.len());
        for (b64, normal) in b64_embedding.iter().zip(embedding.iter()) {
            assert!((b64 - normal).abs() < 1e-6);
        }
    }
}