1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
use derive_builder::Builder;
use serde::{Deserialize, Serialize};
use crate::error::OpenAIError;
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum NEpochs {
NEpochs(u8),
#[default]
#[serde(rename = "auto")]
Auto,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
pub struct Hyperparameters {
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
pub n_epochs: NEpochs,
}
#[derive(Debug, Serialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuningJobRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuningJobRequest {
/// The name of the model to fine-tune. You can select one of the
/// [supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
pub model: String,
/// The ID of an uploaded file that contains training data.
///
/// See [upload file](https://platform.openai.com/docs/api-reference/files/upload) for how to upload a file.
///
/// Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
pub training_file: String,
/// The hyperparameters used for the fine-tuning job.
pub hyperparameters: Option<Hyperparameters>,
/// A string of up to 18 characters that will be added to your fine-tuned model name.
///
/// For example, a `suffix` of "custom-model-name" would produce a model name
/// like `ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null, minLength:1, maxLength:40
/// The ID of an uploaded file that contains validation data.
///
/// If you provide this file, the data is used to generate validation
/// metrics periodically during fine-tuning. These metrics can be viewed in
/// the fine-tuning results file.
/// The same data should not be present in both train and validation files.
///
/// Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
#[serde(skip_serializing_if = "Option::is_none")]
pub validation_file: Option<String>,
}
/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneJobError {
/// A machine-readable error code.
pub code: String,
/// A human-readable error message.
pub message: String,
/// The parameter that was invalid, usually `training_file` or `validation_file`.
/// This field will be null if the failure was not parameter-specific.
pub param: Option<String>, // nullable true
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FineTuningJobStatus {
ValidatingFiles,
Queued,
Running,
Succeeded,
Failed,
Cancelled,
}
/// The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningJob {
/// The object identifier, which can be referenced in the API endpoints.
pub id: String,
/// The Unix timestamp (in seconds) for when the fine-tuning job was created.
pub created_at: u32,
/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
pub error: Option<FineTuneJobError>,
/// The name of the fine-tuned model that is being created.
/// The value will be null if the fine-tuning job is still running.
pub fine_tuned_model: Option<String>, // nullable: true
/// The Unix timestamp (in seconds) for when the fine-tuning job was finished.
/// The value will be null if the fine-tuning job is still running.
pub finished_at: Option<u32>, // nullable true
/// The hyperparameters used for the fine-tuning job.
/// See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
pub hyperparameters: Hyperparameters,
/// The base model that is being fine-tuned.
pub model: String,
/// The object type, which is always "fine_tuning.job".
pub object: String,
/// The organization that owns the fine-tuning job.
pub organization_id: String,
/// The compiled results file ID(s) for the fine-tuning job.
/// You can retrieve the results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub result_files: Vec<String>,
/// The current status of the fine-tuning job, which can be either
/// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
pub status: FineTuningJobStatus,
/// The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
pub trained_tokens: Option<u32>,
/// The file ID used for training. You can retrieve the training data with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub training_file: String,
/// The file ID used for validation. You can retrieve the validation results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub validation_file: Option<String>,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListPaginatedFineTuningJobsResponse {
pub data: Vec<FineTuningJob>,
pub has_more: bool,
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobEventsResponse {
pub data: Vec<FineTuningJobEvent>,
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Level {
Info,
Warn,
Error,
}
///Fine-tuning job event object
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobEvent {
pub id: String,
pub created_at: u32,
pub level: Level,
pub message: String,
pub object: String,
}