1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
use std::{collections::HashMap, path::PathBuf, pin::Pin};

use bytes::Bytes;
use derive_builder::Builder;
use futures::Stream;
use reqwest::{Body};
use serde::{Deserialize, Serialize};

use crate::error::OpenAIError;

/// Describes an OpenAI model offering that can be used with the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Model {
    /// The model identifier, which can be referenced in the API endpoints.
    pub id: String,
    /// The object type, which is always "model".
    pub object: String,
    /// The Unix timestamp (in seconds) when the model was created.
    pub created: u32,
    /// The organization that owns the model.
    pub owned_by: String,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListModelResponse {
    pub object: String,
    pub data: Vec<Model>,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Prompt {
    String(String),
    StringArray(Vec<String>),
    // Minimum value is 0, maximum value is 50256 (inclusive).
    IntegerArray(Vec<u16>),
    ArrayOfIntegerArray(Vec<Vec<u16>>),
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Stop {
    String(String),           // nullable: true
    StringArray(Vec<String>), // minItems: 1; maxItems: 4
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub enum ChatCompletionFunctionCall {
    /// The model does not call a function, and responds to the end-user.
    #[serde(rename = "none")]
    None,
    /// The model can pick between an end-user or calling a function.
    #[serde(rename = "auto")]
    Auto,

    // In spec this is ChatCompletionFunctionCallOption
    // based on feedback from @m1guelpf in https://github.com/64bit/async-openai/pull/118
    // it is diverged from the spec
    /// Forces the model to call the specified function.
    #[serde(untagged)]
    Function { name: String },
}

#[derive(Clone, Serialize, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateCompletionRequest {
    /// ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
    pub model: String,

    /// The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
    ///
    /// Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
    pub prompt: Prompt,

    /// The suffix that comes after a completion of inserted text.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub suffix: Option<String>, // default: null

    /// The maximum number of [tokens](/tokenizer) to generate in the completion.
    ///
    /// The token count of your prompt plus `max_tokens` cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_tokens: Option<u16>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>, // min: 0, max: 2, default: 1,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    ///
    ///  We generally recommend altering this or `temperature` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>, // min: 0, max: 1, default: 1

    /// How many completions to generate for each prompt.

    /// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
    ///
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u8>, // min:1 max: 128, default: 1

    /// Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
    /// as they become available, with the stream terminated by a `data: [DONE]` message.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream: Option<bool>, // nullable: true

    /// Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.

    /// The maximum value for `logprobs` is 5. If you need more than this, please contact us through our [Help center](https://help.openai.com) and describe your use case.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logprobs: Option<u8>, // min:0 , max: 5, default: null, nullable: true

    /// Echo back the prompt in addition to the completion
    #[serde(skip_serializing_if = "Option::is_none")]
    pub echo: Option<bool>,

    ///  Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stop: Option<Stop>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0

    /// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
    ///
    /// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
    ///
    /// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of: Option<u8>, //min: 0, max: 20, default: 1

    /// Modify the likelihood of specified tokens appearing in the completion.
    ///
    /// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
    ///
    /// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,

    /// If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
    ///
    /// Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub seed: Option<i64>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Logprobs {
    pub tokens: Vec<String>,
    pub token_logprobs: Vec<Option<f32>>, // Option is to account for null value in the list
    pub top_logprobs: Vec<serde_json::Value>,
    pub text_offset: Vec<u32>,
}

#[derive(Debug, Serialize, Deserialize, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum CompletionFinishReason {
    Stop,
    Length,
    ContentFilter,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Choice {
    pub text: String,
    pub index: u32,
    pub logprobs: Option<Logprobs>,
    pub finish_reason: Option<CompletionFinishReason>,
}

/// Usage statistics for the completion request.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CompletionUsage {
    /// Number of tokens in the prompt.
    pub prompt_tokens: u32,
    /// Number of tokens in the generated completion.
    pub completion_tokens: u32,
    /// Total number of tokens used in the request (prompt + completion).
    pub total_tokens: u32,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateCompletionResponse {
    /// A unique identifier for the completion.
    pub id: String,
    pub choices: Vec<Choice>,
    /// The Unix timestamp (in seconds) of when the completion was created.
    pub created: u32,

    /// The model used for completion.
    pub model: String,
    /// This fingerprint represents the backend configuration that the model runs with.
    ///
    /// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been
    /// made that might impact determinism.
    pub system_fingerprint: Option<String>,

    /// The object type, which is always "text_completion"
    pub object: String,
    pub usage: Option<CompletionUsage>,
}

/// Parsed server side events stream until an \[DONE\] is received from server.
pub type CompletionResponseStream =
    Pin<Box<dyn Stream<Item = Result<CreateCompletionResponse, OpenAIError>> + Send>>;

#[derive(Debug, Clone, Serialize, Default, Builder, PartialEq)]
#[builder(name = "CreateEditRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateEditRequest {
    /// ID of the model to use. You can use the `text-davinci-edit-001` or `code-davinci-edit-001` model with this endpoint.
    pub model: String,

    /// The input text to use as a starting point for the edit.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input: Option<String>, // default ''

    /// The instruction that tells the model how to edit the prompt.
    pub instruction: String,

    /// How many edits to generate for the input and instruction.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u8>, // min:1 max: 20 default:1

    /// What [sampling temperature](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277) to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>, // min:0 ,max: 2, default: 1,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    ///
    ///  We generally recommend altering this or `temperature` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>, // min: 0, max: 1, default: 1
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateEditResponse {
    pub object: String,
    pub created: u32,
    pub choices: Vec<Choice>,
    pub usage: CompletionUsage,
}

#[derive(Default, Debug, Serialize, Clone, Copy, PartialEq)]
pub enum ImageSize {
    #[serde(rename = "256x256")]
    S256x256,
    #[serde(rename = "512x512")]
    S512x512,
    #[default]
    #[serde(rename = "1024x1024")]
    S1024x1024,
    #[serde(rename = "1792x1024")]
    S1792x1024,
    #[serde(rename = "1024x1792")]
    S1024x1792,
}

#[derive(Default, Debug, Serialize, Clone, Copy, PartialEq)]
pub enum DallE2ImageSize {
    #[serde(rename = "256x256")]
    S256x256,
    #[serde(rename = "512x512")]
    S512x512,
    #[default]
    #[serde(rename = "1024x1024")]
    S1024x1024,
}

#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ResponseFormat {
    #[default]
    Url,
    #[serde(rename = "b64_json")]
    B64Json,
}

#[derive(Debug, Serialize, Default, Clone, PartialEq)]
pub enum ImageModel {
    #[default]
    #[serde(rename = "dall-e-2")]
    DallE2,
    #[serde(rename = "dall-e-3")]
    DallE3,
    #[serde(untagged)]
    Other(String),
}

#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageQuality {
    #[default]
    Standard,
    HD,
}

#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageStyle {
    #[default]
    Vivid,
    Natural,
}

#[derive(Debug, Clone, Serialize, Default, Builder, PartialEq)]
#[builder(name = "CreateImageRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageRequest {
    /// A text description of the desired image(s). The maximum length is 1000 characters for `dall-e-2`
    /// and 4000 characters for `dall-e-3`.
    pub prompt: String,

    /// The model to use for image generation.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model: Option<ImageModel>,

    /// The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u8>, // min:1 max:10 default:1

    /// The quality of the image that will be generated. `hd` creates images with finer details and greater
    /// consistency across the image. This param is only supported for `dall-e-3`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub quality: Option<ImageQuality>,

    /// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub response_format: Option<ResponseFormat>,

    /// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`.
    /// Must be one of `1024x1024`, `1792x1024`, or `1024x1792` for `dall-e-3` models.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub size: Option<ImageSize>,

    /// The style of the generated images. Must be one of `vivid` or `natural`.
    /// Vivid causes the model to lean towards generating hyper-real and dramatic images.
    /// Natural causes the model to produce more natural, less hyper-real looking images.
    /// This param is only supported for `dall-e-3`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub style: Option<ImageStyle>,

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Image {
    /// The URL of the generated image, if `response_format` is `url` (default).
    Url {
        url: String,
        revised_prompt: Option<String>,
    },
    /// The base64-encoded JSON of the generated image, if `response_format` is `b64_json`.
    B64Json {
        b64_json: std::sync::Arc<String>,
        revised_prompt: Option<String>,
    },
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ImagesResponse {
    pub created: u32,
    pub data: Vec<std::sync::Arc<Image>>,
}

#[derive(Debug, Clone, PartialEq)]
pub enum InputSource {
    Path { path: PathBuf },
    Bytes { filename: String, bytes: Bytes },
    VecU8 { filename: String, vec: Vec<u8> },
}

#[derive(Debug, Default, Clone, PartialEq)]
pub struct ImageInput {
    pub source: InputSource,
}

#[derive(Debug, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateImageEditRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageEditRequest {
    /// The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask is not provided, image must have transparency, which will be used as the mask.
    pub image: ImageInput,

    /// A text description of the desired image(s). The maximum length is 1000 characters.
    pub prompt: String,

    /// An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
    pub mask: Option<ImageInput>,

    /// The model to use for image generation. Only `dall-e-2` is supported at this time.
    pub model: Option<ImageModel>,

    /// The number of images to generate. Must be between 1 and 10.
    pub n: Option<u8>, // min:1 max:10 default:1

    /// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
    pub size: Option<DallE2ImageSize>,

    /// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
    pub response_format: Option<ResponseFormat>,

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
    pub user: Option<String>,
}

#[derive(Debug, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateImageVariationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageVariationRequest {
    /// The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square.
    pub image: ImageInput,

    /// The model to use for image generation. Only `dall-e-2` is supported at this time.
    pub model: Option<ImageModel>,

    /// The number of images to generate. Must be between 1 and 10.
    pub n: Option<u8>, // min:1 max:10 default:1

    /// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
    pub size: Option<DallE2ImageSize>,

    /// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
    pub response_format: Option<ResponseFormat>,

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
    pub user: Option<String>,
}

#[derive(Debug, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ModerationInput {
    String(String),
    StringArray(Vec<String>),
}

#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
pub enum TextModerationModel {
    #[default]
    #[serde(rename = "text-moderation-latest")]
    Latest,
    #[serde(rename = "text-moderation-stable")]
    Stable,
}

#[derive(Debug, Default, Clone, Serialize, Builder, PartialEq)]
#[builder(name = "CreateModerationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateModerationRequest {
    /// The input text to classify
    pub input: ModerationInput,

    /// Two content moderations models are available: `text-moderation-stable` and `text-moderation-latest`.
    ///
    /// The default is `text-moderation-latest` which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use `text-moderation-stable`, we will provide advanced notice before updating the model. Accuracy of `text-moderation-stable` may be slightly lower than for `text-moderation-latest`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model: Option<TextModerationModel>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Category {
    /// Content that expresses, incites, or promotes hate based on race, gender,
    /// ethnicity, religion, nationality, sexual orientation, disability status, or
    /// caste. Hateful content aimed at non-protected groups (e.g., chess players)
    /// is harrassment.
    pub hate: bool,
    #[serde(rename = "hate/threatening")]
    /// Hateful content that also includes violence or serious harm towards the
    /// targeted group based on race, gender, ethnicity, religion, nationality,
    /// sexual orientation, disability status, or caste.
    pub hate_threatening: bool,
    /// Content that expresses, incites, or promotes harassing language towards any target.
    pub harassment: bool,
    /// Harassment content that also includes violence or serious harm towards any target.
    #[serde(rename = "harassment/threatening")]
    pub harassment_threatening: bool,
    /// Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders.
    #[serde(rename = "self-harm")]
    pub self_harm: bool,
    /// Content where the speaker expresses that they are engaging or intend to engage in acts of self-harm, such as suicide, cutting, and eating disorders.
    #[serde(rename = "self-harm/intent")]
    pub self_harm_intent: bool,
    /// Content that encourages performing acts of self-harm, such as suicide, cutting, and eating disorders, or that gives instructions or advice on how to commit such acts.
    #[serde(rename = "self-harm/instructions")]
    pub self_harm_instructions: bool,
    /// Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness).
    pub sexual: bool,
    /// Sexual content that includes an individual who is under 18 years old.
    #[serde(rename = "sexual/minors")]
    pub sexual_minors: bool,
    /// Content that depicts death, violence, or physical injury.
    pub violence: bool,
    /// Content that depicts death, violence, or physical injury in graphic detail.
    #[serde(rename = "violence/graphic")]
    pub violence_graphic: bool,
}

/// A list of the categories along with their scores as predicted by model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CategoryScore {
    /// The score for the category 'hate'.
    pub hate: f32,
    /// The score for the category 'hate/threatening'.
    #[serde(rename = "hate/threatening")]
    pub hate_threatening: f32,
    /// The score for the category 'harassment'.
    pub harassment: f32,
    /// The score for the category 'harassment/threatening'.
    #[serde(rename = "harassment/threatening")]
    pub harassment_threatening: f32,
    /// The score for the category 'self-harm'.
    #[serde(rename = "self-harm")]
    pub self_harm: f32,
    /// The score for the category 'self-harm/intent'.
    #[serde(rename = "self-harm/intent")]
    pub self_harm_intent: f32,
    /// The score for the category 'self-harm/instructions'.
    #[serde(rename = "self-harm/instructions")]
    pub self_harm_instructions: f32,
    /// The score for the category 'sexual'.
    pub sexual: f32,
    /// The score for the category 'sexual/minors'.
    #[serde(rename = "sexual/minors")]
    pub sexual_minors: f32,
    /// The score for the category 'violence'.
    pub violence: f32,
    /// The score for the category 'violence/graphic'.
    #[serde(rename = "violence/graphic")]
    pub violence_graphic: f32,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ContentModerationResult {
    /// Whether the content violates [OpenAI's usage policies](https://platform.openai.com/policies/usage-policies).
    pub flagged: bool,
    /// A list of the categories, and whether they are flagged or not.
    pub categories: Category,
    /// A list of the categories along with their scores as predicted by model.
    pub category_scores: CategoryScore,
}

/// Represents policy compliance report by OpenAI's content moderation model against a given input.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CreateModerationResponse {
    /// The unique identifier for the moderation request.
    pub id: String,
    /// The model used to generate the moderation results.
    pub model: String,
    /// A list of moderation objects.
    pub results: Vec<ContentModerationResult>,
}

#[derive(Debug, Default, Clone, PartialEq)]
pub struct FileInput {
    pub source: InputSource,
}

#[derive(Debug, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateFileRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFileRequest {
    /// The file object to be uploaded.
    ///
    /// If the `purpose` is set to "fine-tune", the file will be used for fine-tuning.
    pub file: FileInput,

    /// The intended purpose of the uploaded file.
    ///
    /// Use "fine-tune" for [fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning).
    /// This allows us to validate the format of the uploaded file is correct for fine-tuning.
    pub purpose: String,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFilesResponse {
    pub object: String,
    pub data: Vec<OpenAIFile>,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct DeleteFileResponse {
    pub id: String,
    pub object: String,
    pub deleted: bool,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub enum OpenAIFilePurpose {
    #[serde(rename = "fine-tune")]
    FineTune,
    #[serde(rename = "fine-tune-results")]
    FineTuneResults,
    #[serde(rename = "assistants")]
    Assistants,
    #[serde(rename = "assistants_output")]
    AssistantsOutput,
}

/// The `File` object represents a document that has been uploaded to OpenAI.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct OpenAIFile {
    /// The file identifier, which can be referenced in the API endpoints.
    pub id: String,
    /// The object type, which is always "file".
    pub object: String,
    /// The size of the file in bytes.
    pub bytes: u32,
    /// The Unix timestamp (in seconds) for when the file was created.
    pub created_at: u32,
    /// The name of the file.
    pub filename: String,
    /// The intended purpose of the file. Supported values are `fine-tune`, `fine-tune-results`, `assistants`, and `assistants_output`.
    pub purpose: OpenAIFilePurpose,
    /// Deprecated. The current status of the file, which can be either `uploaded`, `processed`, or `error`.
    #[deprecated]
    pub status: Option<String>,
    /// Deprecated. For details on why a fine-tuning training file failed validation, see the `error` field on `fine_tuning.job`.
    #[deprecated]
    pub status_details: Option<String>, // nullable: true
}

#[derive(Debug, Serialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuneRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuneRequest {
    /// The ID of an uploaded file that contains training data.
    ///
    /// See [upload file](https://platform.openai.com/docs/api-reference/files/upload) for how to upload a file.
    ///
    /// Your dataset must be formatted as a JSONL file, where each training
    /// example is a JSON object with the keys "prompt" and "completion".
    /// Additionally, you must upload your file with the purpose `fine-tune`.
    ///
    /// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning/creating-training-data) for more details.
    pub training_file: String,

    /// The ID of an uploaded file that contains validation data.
    ///
    /// If you provide this file, the data is used to generate validation
    /// metrics periodically during fine-tuning. These metrics can be viewed in
    /// the [fine-tuning results file](https://platform.openai.com/docs/guides/fine-tuning/analyzing-your-fine-tuned-model).
    /// Your train and validation data should be mutually exclusive.
    ///
    /// Your dataset must be formatted as a JSONL file, where each validation
    /// example is a JSON object with the keys "prompt" and "completion".
    /// Additionally, you must upload your file with the purpose `fine-tune`.
    ///
    /// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning/creating-training-data) for more details.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_file: Option<String>,

    /// The name of the base model to fine-tune. You can select one of "ada",
    /// "babbage", "curie", "davinci", or a fine-tuned model created after 2022-04-21.
    /// To learn more about these models, see the [Models](https://platform.openai.com/docs/models) documentation.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model: Option<String>,

    /// The number of epochs to train the model for. An epoch refers to one
    /// full cycle through the training dataset.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n_epochs: Option<u32>, // default: 4

    /// The batch size to use for training. The batch size is the number of
    /// training examples used to train a single forward and backward pass.
    ///
    /// By default, the batch size will be dynamically configured to be
    /// ~0.2% of the number of examples in the training set, capped at 256 -
    /// in general, we've found that larger batch sizes tend to work better
    /// for larger datasets.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_size: Option<u32>, // default: null

    /// The learning rate multiplier to use for training.
    /// The fine-tuning learning rate is the original learning rate used for
    /// pretraining multiplied by this value.
    ///
    /// By default, the learning rate multiplier is the 0.05, 0.1, or 0.2
    /// depending on final `batch_size` (larger learning rates tend to
    /// perform better with larger batch sizes). We recommend experimenting
    /// with values in the range 0.02 to 0.2 to see what produces the best
    /// results.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub learning_rate_multiplier: Option<f32>, // default: null

    /// The weight to use for loss on the prompt tokens. This controls how
    /// much the model tries to learn to generate the prompt (as compared
    /// to the completion which always has a weight of 1.0), and can add
    /// a stabilizing effect to training when completions are short.
    ///
    /// If prompts are extremely long (relative to completions), it may make
    /// sense to reduce this weight so as to avoid over-prioritizing
    /// learning the prompt.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prompt_loss_weight: Option<f32>, // default: 0.01

    /// If set, we calculate classification-specific metrics such as accuracy
    /// and F-1 score using the validation set at the end of every epoch.
    /// These metrics can be viewed in the [results file](https://platform.openai.com/docs/guides/fine-tuning/analyzing-your-fine-tuned-model).
    ///
    /// In order to compute classification metrics, you must provide a
    /// `validation_file`. Additionally, you must
    /// specify `classification_n_classes` for multiclass classification or
    /// `classification_positive_class` for binary classification.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_classification_metrics: Option<bool>, // default: false

    /// The number of classes in a classification task.
    ///
    /// This parameter is required for multiclass classification.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub classification_n_classes: Option<u32>, // default: null

    /// The positive class in binary classification.
    ///
    /// This parameter is needed to generate precision, recall, and F1
    /// metrics when doing binary classification.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub classification_positive_class: Option<String>, // default: null

    /// If this is provided, we calculate F-beta scores at the specified
    /// beta values. The F-beta score is a generalization of F-1 score.
    /// This is only used for binary classification.
    ///
    /// With a beta of 1 (i.e. the F-1 score), precision and recall are
    /// given the same weight. A larger beta score puts more weight on
    /// recall and less on precision. A smaller beta score puts more weight
    /// on precision and less on recall.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub classification_betas: Option<Vec<f32>>, // default: null

    /// A string of up to 40 characters that will be added to your fine-tuned model name.
    ///
    /// For example, a `suffix` of "custom-model-name" would produce a model name like `ada:ft-your-org:custom-model-name-2022-02-15-04-21-04`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub suffix: Option<String>, // default: null, minLength:1, maxLength:40
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneResponse {
    pub object: String,
    pub data: Vec<FineTune>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTune {
    pub id: String,
    pub object: String,
    pub created_at: u32,
    pub updated_at: u32,
    pub model: String,
    pub fine_tuned_model: Option<String>, // nullable: true
    pub organization_id: String,
    pub status: String,
    pub hyperparams: serde_json::Value,
    pub training_files: Vec<OpenAIFile>,
    pub validation_files: Vec<OpenAIFile>,
    pub result_files: Vec<OpenAIFile>,
    pub events: Option<Vec<FineTuneEvent>>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneEvent {
    pub object: String,
    pub created_at: u32,
    pub level: String,
    pub message: String,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneEventsResponse {
    pub object: String,
    pub data: Vec<FineTuneEvent>,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneEventsStreamResponse {
    pub object: String,
    pub data: Option<Vec<FineTuneEvent>>,
}

/// Parsed server side events stream until an \[DONE\] is received from server.
pub type FineTuneEventsResponseStream =
    Pin<Box<dyn Stream<Item = Result<ListFineTuneEventsStreamResponse, OpenAIError>> + Send>>;

//// Start Fine Tuning

#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum NEpochs {
    NEpochs(u8),
    #[default]
    #[serde(rename = "auto")]
    Auto,
}

#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
pub struct Hyperparameters {
    /// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
    ///
    /// "auto" decides the optimal number of epochs based on the size of the dataset.
    /// If setting the number manually, we support any number between 1 and 50 epochs.
    pub n_epochs: NEpochs,
}

#[derive(Debug, Serialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuningJobRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuningJobRequest {
    /// The name of the model to fine-tune. You can select one of the
    /// [supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
    pub model: String,

    /// The ID of an uploaded file that contains training data.
    ///
    /// See [upload file](https://platform.openai.com/docs/api-reference/files/upload) for how to upload a file.
    ///
    /// Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
    ///
    /// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
    pub training_file: String,

    /// The hyperparameters used for the fine-tuning job.
    pub hyperparameters: Option<Hyperparameters>,

    /// A string of up to 18 characters that will be added to your fine-tuned model name.
    ///
    /// For example, a `suffix` of "custom-model-name" would produce a model name
    /// like `ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub suffix: Option<String>, // default: null, minLength:1, maxLength:40

    /// The ID of an uploaded file that contains validation data.
    ///
    /// If you provide this file, the data is used to generate validation
    /// metrics periodically during fine-tuning. These metrics can be viewed in
    /// the fine-tuning results file.
    /// The same data should not be present in both train and validation files.
    ///
    /// Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
    ///
    /// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_file: Option<String>,
}

/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneJobError {
    ///  A machine-readable error code.
    pub code: String,
    ///  A human-readable error message.
    pub message: String,
    /// The parameter that was invalid, usually `training_file` or `validation_file`.
    /// This field will be null if the failure was not parameter-specific.
    pub param: Option<String>, // nullable true
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FineTuningJobStatus {
    ValidatingFiles,
    Queued,
    Running,
    Succeeded,
    Failed,
    Cancelled,
}

/// The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningJob {
    /// The object identifier, which can be referenced in the API endpoints.
    pub id: String,
    /// The Unix timestamp (in seconds) for when the fine-tuning job was created.
    pub created_at: u32,
    /// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
    pub error: Option<FineTuneJobError>,
    /// The name of the fine-tuned model that is being created.
    /// The value will be null if the fine-tuning job is still running.
    pub fine_tuned_model: Option<String>, // nullable: true
    /// The Unix timestamp (in seconds) for when the fine-tuning job was finished.
    /// The value will be null if the fine-tuning job is still running.
    pub finished_at: Option<u32>, // nullable true

    /// The hyperparameters used for the fine-tuning job.
    /// See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
    pub hyperparameters: Hyperparameters,

    ///  The base model that is being fine-tuned.
    pub model: String,

    /// The object type, which is always "fine_tuning.job".
    pub object: String,
    /// The organization that owns the fine-tuning job.
    pub organization_id: String,

    /// The compiled results file ID(s) for the fine-tuning job.
    /// You can retrieve the results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
    pub result_files: Vec<String>,

    /// The current status of the fine-tuning job, which can be either
    /// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
    pub status: FineTuningJobStatus,

    /// The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
    pub trained_tokens: Option<u32>,

    /// The file ID used for training. You can retrieve the training data with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
    pub training_file: String,

    ///  The file ID used for validation. You can retrieve the validation results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
    pub validation_file: Option<String>,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListPaginatedFineTuningJobsResponse {
    pub data: Vec<FineTuningJob>,
    pub has_more: bool,
    pub object: String,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobEventsResponse {
    pub data: Vec<FineTuningJobEvent>,
    pub object: String,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Level {
    Info,
    Warn,
    Error,
}

///Fine-tuning job event object
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobEvent {
    pub id: String,
    pub created_at: u32,
    pub level: Level,
    pub message: String,
    pub object: String,
}

//// End Fine Tuning

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct DeleteModelResponse {
    pub id: String,
    pub object: String,
    pub deleted: bool,
}

#[derive(Debug, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum EmbeddingInput {
    String(String),
    StringArray(Vec<String>),
    // Minimum value is 0, maximum value is 100257 (inclusive).
    IntegerArray(Vec<u32>),
    ArrayOfIntegerArray(Vec<Vec<u32>>),
}

#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum EncodingFormat {
    #[default]
    Float,
    Base64,
}

#[derive(Debug, Serialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateEmbeddingRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateEmbeddingRequest {
    /// ID of the model to use. You can use the
    /// [List models](https://platform.openai.com/docs/api-reference/models/list)
    /// API to see all of your available models, or see our
    /// [Model overview](https://platform.openai.com/docs/models/overview)
    /// for descriptions of them.
    pub model: String,

    /// Input text to embed, encoded as a string or array of tokens. To embed multiple
    ///  inputs in a single request, pass an array of strings or array of token arrays.
    ///  The input must not exceed the max input tokens for the model (8192 tokens for
    ///  `text-embedding-ada-002`) and cannot be an empty string.
    /// [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
    pub input: EmbeddingInput,

    /// The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). Defaults to float
    #[serde(skip_serializing_if = "Option::is_none")]
    pub encoding_format: Option<EncodingFormat>,

    /// A unique identifier representing your end-user, which will help OpenAI
    ///  to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,
}

/// Represents an embedding vector returned by embedding endpoint.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Embedding {
    /// The index of the embedding in the list of embeddings.
    pub index: u32,
    /// The object type, which is always "embedding".
    pub object: String,
    /// The embedding vector, which is a list of floats. The length of vector
    /// depends on the model as listed in the [embedding guide](https://platform.openai.com/docs/guides/embeddings).
    pub embedding: Vec<f32>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct EmbeddingUsage {
    /// The number of tokens used by the prompt.
    pub prompt_tokens: u32,
    /// The total number of tokens used by the request.
    pub total_tokens: u32,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateEmbeddingResponse {
    pub object: String,
    /// The name of the model used to generate the embedding.
    pub model: String,
    /// The list of embeddings generated by the model.
    pub data: Vec<Embedding>,
    /// The usage information for the request.
    pub usage: EmbeddingUsage,
}

#[derive(Debug, Serialize, Deserialize, Clone, Copy, Default, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Role {
    System,
    #[default]
    User,
    Assistant,
    Tool,
    Function,
}

/// The name and arguments of a function that should be called, as generated by the model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FunctionCall {
    /// The name of the function to call.
    pub name: String,
    /// The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
    pub arguments: String,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestSystemMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestSystemMessage {
    /// The contents of the system message.
    pub content: Option<String>,
    /// The role of the messages author, in this case `system`.
    #[builder(default = "Role::System")]
    pub role: Role,
    /// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestMessageContentPartTextArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestMessageContentPartText {
    #[builder(default = "\"text\".into()")]
    pub r#type: String,
    pub text: String,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageUrlDetail {
    #[default]
    Auto,
    Low,
    High,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ImageUrlArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ImageUrl {
    /// Either a URL of the image or the base64 encoded image data.
    pub url: String,
    /// Specifies the detail level of the image.
    pub detail: ImageUrlDetail,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestMessageContentPartImageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestMessageContentPartImage {
    #[builder(default = "\"image_url\".into()")]
    pub r#type: String,
    pub image_url: ImageUrl,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionRequestMessageContentPart {
    Text(ChatCompletionRequestMessageContentPartText),
    Image(ChatCompletionRequestMessageContentPartImage),
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionRequestUserMessageContent {
    /// The text contents of the message.
    Text(String),
    ///  An array of content parts with a defined type, each can be of type `text` or `image_url`
    /// when passing in images. You can pass multiple images by adding multiple `image_url` content parts.
    ///  Image input is only supported when using the `gpt-4-visual-preview` model.
    Array(Vec<ChatCompletionRequestMessageContentPart>),
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestUserMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestUserMessage {
    /// The contents of the user message.
    pub content: Option<ChatCompletionRequestUserMessageContent>,
    /// The role of the messages author, in this case `user`.
    #[builder(default = "Role::User")]
    pub role: Role,
    /// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestAssistantMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestAssistantMessage {
    /// The contents of the assistant message.
    pub content: Option<String>,
    /// The role of the messages author, in this case `assistant`.
    #[builder(default = "Role::Assistant")]
    pub role: Role,
    /// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tool_calls: Option<Vec<ChatCompletionMessageToolCall>>,
    /// Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model.
    #[deprecated]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub function_call: Option<FunctionCall>,
}

/// Tool message
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestToolMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestToolMessage {
    /// The role of the messages author, in this case `tool`.
    #[builder(default = "Role::Tool")]
    pub role: Role,
    /// The contents of the tool message.
    pub content: Option<String>,
    pub tool_call_id: String,
}

#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestFunctionMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestFunctionMessage {
    /// The role of the messages author, in this case `function`.
    #[builder(default = "Role::Function")]
    pub role: Role,
    /// The return value from the function call, to return to the model.
    pub content: Option<String>,
    /// The name of the function to call.
    pub name: String,
}

#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionRequestMessage {
    System(ChatCompletionRequestSystemMessage),
    User(ChatCompletionRequestUserMessage),
    Assistant(ChatCompletionRequestAssistantMessage),
    Tool(ChatCompletionRequestToolMessage),
    Function(ChatCompletionRequestFunctionMessage),
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionMessageToolCall {
    /// The ID of the tool call.
    pub id: String,
    /// The type of the tool. Currently, only `function` is supported.
    pub r#type: ChatCompletionToolType,
    /// The function that the model called.
    pub function: FunctionCall,
}

/// A chat completion message generated by the model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseMessage {
    /// The contents of the message.
    pub content: Option<String>,

    /// The tool calls generated by the model, such as function calls.
    pub tool_calls: Option<Vec<ChatCompletionMessageToolCall>>,

    /// The role of the author of this message.
    pub role: Role,

    /// Deprecated and replaced by `tool_calls`.
    /// The name and arguments of a function that should be called, as generated by the model.
    #[deprecated]
    pub function_call: Option<FunctionCall>,
}

#[derive(Clone, Serialize, Default, Debug, Deserialize, Builder, PartialEq)]
#[builder(name = "ChatCompletionFunctionsArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionFunctions {
    /// The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
    pub name: String,
    /// A description of what the function does, used by the model to choose when and how to call the function.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub description: Option<String>,
    /// The parameters the functions accepts, described as a JSON Schema object.
    /// See the [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for examples,
    /// and the [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for
    /// documentation about the format.
    ///
    /// To describe a function that accepts no parameters, provide the
    /// value `{\"type\": \"object\", \"properties\": {}}`.
    pub parameters: serde_json::Value,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum ChatCompletionResponseFormatType {
    Text,
    JsonObject,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseFormat {
    /// Setting to `json_object` enables JSON mode. This guarantees that the message the model generates is valid JSON.
    ///
    /// Note that your system prompt must still instruct the model to produce JSON, and to help ensure you don't forget,
    /// the API will throw an error if the string `JSON` does not appear in your system message. Also note that the message
    /// content may be partial (i.e. cut off) if `finish_reason="length"`, which indicates the generation
    /// exceeded `max_tokens` or the conversation exceeded the max context length.
    ///
    /// Must be one of `text` or `json_object`.
    pub r#type: ChatCompletionResponseFormatType,
}

#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ChatCompletionToolType {
    #[default]
    Function,
}

#[derive(Clone, Serialize, Default, Debug, Builder, Deserialize, PartialEq)]
#[builder(name = "ChatCompletionToolArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionTool {
    #[builder(default = "ChatCompletionToolType::Function")]
    pub r#type: ChatCompletionToolType,
    pub function: ChatCompletionFunctions,
}

#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
pub struct FunctionName {
    /// The name of the function to call.
    pub name: String,
}

/// Specifies a tool the model should use. Use to force the model to call a specific function.
#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
pub struct ChatCompletionNamedToolChoice {
    /// The type of the tool. Currently, only `function` is supported.
    pub r#type: ChatCompletionToolType,

    pub function: FunctionName,
}

/// Controls which (if any) function is called by the model.
/// `none` means the model will not call a function and instead generates a message.
/// `auto` means the model can pick between generating a message or calling a function.
/// Specifying a particular function via `{"type: "function", "function": {"name": "my_function"}}` forces the model to call that function.

/// `none` is the default when no functions are present. `auto` is the default if functions are present.
#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ChatCompletionToolChoiceOption {
    #[default]
    None,
    Auto,
    #[serde(untagged)]
    Named(ChatCompletionNamedToolChoice),
}

#[derive(Clone, Serialize, Default, Debug, Builder, Deserialize, PartialEq)]
#[builder(name = "CreateChatCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateChatCompletionRequest {
    /// A list of messages comprising the conversation so far. [Example Python code](https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models).
    pub messages: Vec<ChatCompletionRequestMessage>, // min: 1

    /// ID of the model to use.
    /// See the [model endpoint compatibility](https://platform.openai.com/docs/models/model-endpoint-compatibility) table for details on which models work with the Chat API.
    pub model: String,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0

    /// Modify the likelihood of specified tokens appearing in the completion.
    ///
    /// Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100.
    /// Mathematically, the bias is added to the logits generated by the model prior to sampling.
    /// The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection;
    /// values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null

    /// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the chat completion.
    ///
    /// The total length of input tokens and generated tokens is limited by the model's context length. [Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb) for counting tokens.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_tokens: Option<u16>,

    /// How many chat completion choices to generate for each input message.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u8>, // min:1, max: 128, default: 1

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
    ///
    /// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0

    /// An object specifying the format that the model must output.
    ///
    /// Setting to `{ "type": "json_object" }` enables JSON mode, which guarantees the message the model generates is valid JSON.
    ///
    /// **Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in increased latency and appearance of a "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub response_format: Option<ChatCompletionResponseFormat>,

    ///  This feature is in Beta.
    /// If specified, our system will make a best effort to sample deterministically, such that repeated requests
    /// with the same `seed` and parameters should return the same result.
    /// Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub seed: Option<i64>,

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stop: Option<Stop>,

    /// If set, partial message deltas will be sent, like in ChatGPT.
    /// Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
    /// as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream: Option<bool>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random,
    /// while lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>, // min: 0, max: 2, default: 1,

    /// An alternative to sampling with temperature, called nucleus sampling,
    /// where the model considers the results of the tokens with top_p probability mass.
    /// So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    ///
    ///  We generally recommend altering this or `temperature` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>, // min: 0, max: 1, default: 1

    /// A list of tools the model may call. Currently, only functions are supported as a tool.
    /// Use this to provide a list of functions the model may generate JSON inputs for.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tools: Option<Vec<ChatCompletionTool>>,

    #[serde(skip_serializing_if = "Option::is_none")]
    pub tool_choice: Option<ChatCompletionToolChoiceOption>,

    /// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,

    /// Controls how the model responds to function calls.
    /// "none" means the model does not call a function, and responds to the end-user.
    /// "auto" means the model can pick between an end-user or calling a function.
    /// Specifying a particular function via `{"name":\ "my_function"}` forces the model to call that function.
    /// "none" is the default when no functions are present. "auto" is the default if functions are present.
    #[deprecated]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub function_call: Option<ChatCompletionFunctionCall>,

    /// A list of functions the model may generate JSON inputs for.
    #[deprecated]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub functions: Option<Vec<ChatCompletionFunctions>>,
}

#[derive(Debug, Serialize, Deserialize, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FinishReason {
    Stop,
    Length,
    ToolCalls,
    ContentFilter,
    FunctionCall,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatChoice {
    /// The index of the choice in the list of choices.
    pub index: u32,
    pub message: ChatCompletionResponseMessage,
    /// The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence,
    /// `length` if the maximum number of tokens specified in the request was reached,
    /// `content_filter` if content was omitted due to a flag from our content filters,
    /// `tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function.
    pub finish_reason: Option<FinishReason>,
}

/// Represents a chat completion response returned by model, based on the provided input.
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateChatCompletionResponse {
    /// A unique identifier for the chat completion.
    pub id: String,
    /// A list of chat completion choices. Can be more than one if `n` is greater than 1.
    pub choices: Vec<ChatChoice>,
    /// The Unix timestamp (in seconds) of when the chat completion was created.
    pub created: u32,
    /// The model used for the chat completion.
    pub model: String,
    /// This fingerprint represents the backend configuration that the model runs with.
    ///
    /// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
    pub system_fingerprint: Option<String>,

    /// The object type, which is always `chat.completion`.
    pub object: String,
    pub usage: Option<CompletionUsage>,
}

/// Parsed server side events stream until an \[DONE\] is received from server.
pub type ChatCompletionResponseStream =
    Pin<Box<dyn Stream<Item = Result<CreateChatCompletionStreamResponse, OpenAIError>> + Send>>;

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FunctionCallStream {
    /// The name of the function to call.
    pub name: Option<String>,
    /// The arguments to call the function with, as generated by the model in JSON format.
    /// Note that the model does not always generate valid JSON, and may hallucinate
    /// parameters not defined by your function schema. Validate the arguments in your
    /// code before calling your function.
    pub arguments: Option<String>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionMessageToolCallChunk {
    pub index: i32,
    /// The ID of the tool call.
    pub id: Option<String>,
    /// The type of the tool. Currently, only `function` is supported.
    pub r#type: Option<ChatCompletionToolType>,
    pub function: Option<FunctionCallStream>,
}

/// A chat completion delta generated by streamed model responses.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionStreamResponseDelta {
    /// The contents of the chunk message.
    pub content: Option<String>,
    /// The name and arguments of a function that should be called, as generated by the model.
    #[deprecated]
    pub function_call: Option<FunctionCallStream>,

    pub tool_calls: Option<Vec<ChatCompletionMessageToolCallChunk>>,
    /// The role of the author of this message.
    pub role: Option<Role>,
}

#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseStreamMessage {
    /// The index of the choice in the list of choices.
    pub index: u32,
    pub delta: ChatCompletionStreamResponseDelta,
    pub finish_reason: Option<FinishReason>,
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
/// Represents a streamed chunk of a chat completion response returned by model, based on the provided input.
pub struct CreateChatCompletionStreamResponse {
    /// A unique identifier for the chat completion. Each chunk has the same ID.
    pub id: String,
    /// A list of chat completion choices. Can be more than one if `n` is greater than 1.
    pub choices: Vec<ChatCompletionResponseStreamMessage>,

    /// The Unix timestamp (in seconds) of when the chat completion was created. Each chunk has the same timestamp.
    pub created: u32,
    /// The model to generate the completion.
    pub model: String,
    /// This fingerprint represents the backend configuration that the model runs with.
    /// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
    pub system_fingerprint: Option<String>,
    /// The object type, which is always `chat.completion.chunk`.
    pub object: String,
}

#[derive(Debug, Default, Clone, PartialEq)]
pub struct AudioInput {
    pub source: InputSource,
}

#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum AudioResponseFormat {
    #[default]
    Json,
    Text,
    Srt,
    VerboseJson,
    Vtt,
}

#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum SpeechResponseFormat {
    #[default]
    Mp3,
    Opus,
    Aac,
    Flac,
}

#[derive(Debug, Default, Serialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
#[non_exhaustive]
pub enum Voice {
    #[default]
    Alloy,
    Echo,
    Fable,
    Onyx,
    Nova,
    Shimmer,
    #[serde(untagged)]
    Other(String),
}

#[derive(Debug, Default, Serialize, Clone, PartialEq)]
pub enum SpeechModel {
    #[default]
    #[serde(rename = "tts-1")]
    Tts1,
    #[serde(rename = "tts-1-hd")]
    Tts1Hd,
    #[serde(untagged)]
    Other(String),
}

#[derive(Clone, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateTranscriptionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateTranscriptionRequest {
    /// The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
    pub file: AudioInput,

    /// ID of the model to use. Only `whisper-1` is currently available.
    pub model: String,

    /// An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should match the audio language.
    pub prompt: Option<String>,

    /// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
    pub response_format: Option<AudioResponseFormat>,

    /// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
    pub temperature: Option<f32>, // default: 0

    /// The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency.
    pub language: Option<String>,
}

#[derive(Debug, Deserialize, Clone, Serialize)]
pub struct CreateTranscriptionResponse {
    pub text: String,
}

#[derive(Clone, Default, Debug, Builder, PartialEq, Serialize)]
#[builder(name = "CreateSpeechRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateSpeechRequest {
    /// The text to generate audio for. The maximum length is 4096 characters.
    pub input: String,

    /// One of the available [TTS models](https://platform.openai.com/docs/models/tts): `tts-1` or `tts-1-hd`
    pub model: SpeechModel,

    /// The voice to use when generating the audio. Supported voices are `alloy`, `echo`, `fable`, `onyx`, `nova`, and `shimmer`.
    pub voice: Voice,

    /// The format to audio in. Supported formats are mp3, opus, aac, and flac.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub response_format: Option<SpeechResponseFormat>,

    /// The speed of the generated audio. Select a value from 0.25 to 4.0. 1.0 is the default.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub speed: Option<f32>, // default: 1.0
}

#[derive(Clone, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateTranslationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateTranslationRequest {
    /// The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
    pub file: AudioInput,

    /// ID of the model to use. Only `whisper-1` is currently available.
    pub model: String,

    /// An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should be in English.
    pub prompt: Option<String>,

    /// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
    pub response_format: Option<AudioResponseFormat>,

    /// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
    pub temperature: Option<f32>, // default: 0
}

#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateTranslationResponse {
    pub text: String,
}

#[derive(Debug, Clone)]
pub struct CreateSpeechResponse {
    pub bytes: Bytes,
}