1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
use std::{collections::HashMap, path::PathBuf, pin::Pin};
use bytes::Bytes;
use derive_builder::Builder;
use futures::Stream;
use reqwest::{Body};
use serde::{Deserialize, Serialize};
use crate::error::OpenAIError;
/// Describes an OpenAI model offering that can be used with the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Model {
/// The model identifier, which can be referenced in the API endpoints.
pub id: String,
/// The object type, which is always "model".
pub object: String,
/// The Unix timestamp (in seconds) when the model was created.
pub created: u32,
/// The organization that owns the model.
pub owned_by: String,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListModelResponse {
pub object: String,
pub data: Vec<Model>,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Prompt {
String(String),
StringArray(Vec<String>),
// Minimum value is 0, maximum value is 50256 (inclusive).
IntegerArray(Vec<u16>),
ArrayOfIntegerArray(Vec<Vec<u16>>),
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Stop {
String(String), // nullable: true
StringArray(Vec<String>), // minItems: 1; maxItems: 4
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub enum ChatCompletionFunctionCall {
/// The model does not call a function, and responds to the end-user.
#[serde(rename = "none")]
None,
/// The model can pick between an end-user or calling a function.
#[serde(rename = "auto")]
Auto,
// In spec this is ChatCompletionFunctionCallOption
// based on feedback from @m1guelpf in https://github.com/64bit/async-openai/pull/118
// it is diverged from the spec
/// Forces the model to call the specified function.
#[serde(untagged)]
Function { name: String },
}
#[derive(Clone, Serialize, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateCompletionRequest {
/// ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
pub model: String,
/// The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
///
/// Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
pub prompt: Prompt,
/// The suffix that comes after a completion of inserted text.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null
/// The maximum number of [tokens](/tokenizer) to generate in the completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u16>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min: 0, max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
/// How many completions to generate for each prompt.
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
///
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max: 128, default: 1
/// Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
/// as they become available, with the stream terminated by a `data: [DONE]` message.
#[serde(skip_serializing_if = "Option::is_none")]
pub stream: Option<bool>, // nullable: true
/// Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
/// The maximum value for `logprobs` is 5. If you need more than this, please contact us through our [Help center](https://help.openai.com) and describe your use case.
#[serde(skip_serializing_if = "Option::is_none")]
pub logprobs: Option<u8>, // min:0 , max: 5, default: null, nullable: true
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
pub echo: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<Stop>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0
/// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
///
/// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
///
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
pub best_of: Option<u8>, //min: 0, max: 20, default: 1
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
///
/// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
#[serde(skip_serializing_if = "Option::is_none")]
pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
/// If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
///
/// Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
#[serde(skip_serializing_if = "Option::is_none")]
pub seed: Option<i64>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Logprobs {
pub tokens: Vec<String>,
pub token_logprobs: Vec<Option<f32>>, // Option is to account for null value in the list
pub top_logprobs: Vec<serde_json::Value>,
pub text_offset: Vec<u32>,
}
#[derive(Debug, Serialize, Deserialize, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum CompletionFinishReason {
Stop,
Length,
ContentFilter,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Choice {
pub text: String,
pub index: u32,
pub logprobs: Option<Logprobs>,
pub finish_reason: Option<CompletionFinishReason>,
}
/// Usage statistics for the completion request.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CompletionUsage {
/// Number of tokens in the prompt.
pub prompt_tokens: u32,
/// Number of tokens in the generated completion.
pub completion_tokens: u32,
/// Total number of tokens used in the request (prompt + completion).
pub total_tokens: u32,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateCompletionResponse {
/// A unique identifier for the completion.
pub id: String,
pub choices: Vec<Choice>,
/// The Unix timestamp (in seconds) of when the completion was created.
pub created: u32,
/// The model used for completion.
pub model: String,
/// This fingerprint represents the backend configuration that the model runs with.
///
/// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been
/// made that might impact determinism.
pub system_fingerprint: Option<String>,
/// The object type, which is always "text_completion"
pub object: String,
pub usage: Option<CompletionUsage>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type CompletionResponseStream =
Pin<Box<dyn Stream<Item = Result<CreateCompletionResponse, OpenAIError>> + Send>>;
#[derive(Debug, Clone, Serialize, Default, Builder, PartialEq)]
#[builder(name = "CreateEditRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateEditRequest {
/// ID of the model to use. You can use the `text-davinci-edit-001` or `code-davinci-edit-001` model with this endpoint.
pub model: String,
/// The input text to use as a starting point for the edit.
#[serde(skip_serializing_if = "Option::is_none")]
pub input: Option<String>, // default ''
/// The instruction that tells the model how to edit the prompt.
pub instruction: String,
/// How many edits to generate for the input and instruction.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max: 20 default:1
/// What [sampling temperature](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277) to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min:0 ,max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateEditResponse {
pub object: String,
pub created: u32,
pub choices: Vec<Choice>,
pub usage: CompletionUsage,
}
#[derive(Default, Debug, Serialize, Clone, Copy, PartialEq)]
pub enum ImageSize {
#[serde(rename = "256x256")]
S256x256,
#[serde(rename = "512x512")]
S512x512,
#[default]
#[serde(rename = "1024x1024")]
S1024x1024,
#[serde(rename = "1792x1024")]
S1792x1024,
#[serde(rename = "1024x1792")]
S1024x1792,
}
#[derive(Default, Debug, Serialize, Clone, Copy, PartialEq)]
pub enum DallE2ImageSize {
#[serde(rename = "256x256")]
S256x256,
#[serde(rename = "512x512")]
S512x512,
#[default]
#[serde(rename = "1024x1024")]
S1024x1024,
}
#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ResponseFormat {
#[default]
Url,
#[serde(rename = "b64_json")]
B64Json,
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
pub enum ImageModel {
#[default]
#[serde(rename = "dall-e-2")]
DallE2,
#[serde(rename = "dall-e-3")]
DallE3,
#[serde(untagged)]
Other(String),
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageQuality {
#[default]
Standard,
HD,
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageStyle {
#[default]
Vivid,
Natural,
}
#[derive(Debug, Clone, Serialize, Default, Builder, PartialEq)]
#[builder(name = "CreateImageRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageRequest {
/// A text description of the desired image(s). The maximum length is 1000 characters for `dall-e-2`
/// and 4000 characters for `dall-e-3`.
pub prompt: String,
/// The model to use for image generation.
#[serde(skip_serializing_if = "Option::is_none")]
pub model: Option<ImageModel>,
/// The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max:10 default:1
/// The quality of the image that will be generated. `hd` creates images with finer details and greater
/// consistency across the image. This param is only supported for `dall-e-3`.
#[serde(skip_serializing_if = "Option::is_none")]
pub quality: Option<ImageQuality>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
#[serde(skip_serializing_if = "Option::is_none")]
pub response_format: Option<ResponseFormat>,
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`.
/// Must be one of `1024x1024`, `1792x1024`, or `1024x1792` for `dall-e-3` models.
#[serde(skip_serializing_if = "Option::is_none")]
pub size: Option<ImageSize>,
/// The style of the generated images. Must be one of `vivid` or `natural`.
/// Vivid causes the model to lean towards generating hyper-real and dramatic images.
/// Natural causes the model to produce more natural, less hyper-real looking images.
/// This param is only supported for `dall-e-3`.
#[serde(skip_serializing_if = "Option::is_none")]
pub style: Option<ImageStyle>,
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Image {
/// The URL of the generated image, if `response_format` is `url` (default).
Url {
url: String,
revised_prompt: Option<String>,
},
/// The base64-encoded JSON of the generated image, if `response_format` is `b64_json`.
B64Json {
b64_json: std::sync::Arc<String>,
revised_prompt: Option<String>,
},
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ImagesResponse {
pub created: u32,
pub data: Vec<std::sync::Arc<Image>>,
}
#[derive(Debug, Clone, PartialEq)]
pub enum InputSource {
Path { path: PathBuf },
Bytes { filename: String, bytes: Bytes },
VecU8 { filename: String, vec: Vec<u8> },
}
#[derive(Debug, Default, Clone, PartialEq)]
pub struct ImageInput {
pub source: InputSource,
}
#[derive(Debug, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateImageEditRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageEditRequest {
/// The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask is not provided, image must have transparency, which will be used as the mask.
pub image: ImageInput,
/// A text description of the desired image(s). The maximum length is 1000 characters.
pub prompt: String,
/// An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
pub mask: Option<ImageInput>,
/// The model to use for image generation. Only `dall-e-2` is supported at this time.
pub model: Option<ImageModel>,
/// The number of images to generate. Must be between 1 and 10.
pub n: Option<u8>, // min:1 max:10 default:1
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
pub size: Option<DallE2ImageSize>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
pub response_format: Option<ResponseFormat>,
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
pub user: Option<String>,
}
#[derive(Debug, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateImageVariationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageVariationRequest {
/// The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square.
pub image: ImageInput,
/// The model to use for image generation. Only `dall-e-2` is supported at this time.
pub model: Option<ImageModel>,
/// The number of images to generate. Must be between 1 and 10.
pub n: Option<u8>, // min:1 max:10 default:1
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
pub size: Option<DallE2ImageSize>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
pub response_format: Option<ResponseFormat>,
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
pub user: Option<String>,
}
#[derive(Debug, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ModerationInput {
String(String),
StringArray(Vec<String>),
}
#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
pub enum TextModerationModel {
#[default]
#[serde(rename = "text-moderation-latest")]
Latest,
#[serde(rename = "text-moderation-stable")]
Stable,
}
#[derive(Debug, Default, Clone, Serialize, Builder, PartialEq)]
#[builder(name = "CreateModerationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateModerationRequest {
/// The input text to classify
pub input: ModerationInput,
/// Two content moderations models are available: `text-moderation-stable` and `text-moderation-latest`.
///
/// The default is `text-moderation-latest` which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use `text-moderation-stable`, we will provide advanced notice before updating the model. Accuracy of `text-moderation-stable` may be slightly lower than for `text-moderation-latest`.
#[serde(skip_serializing_if = "Option::is_none")]
pub model: Option<TextModerationModel>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Category {
/// Content that expresses, incites, or promotes hate based on race, gender,
/// ethnicity, religion, nationality, sexual orientation, disability status, or
/// caste. Hateful content aimed at non-protected groups (e.g., chess players)
/// is harrassment.
pub hate: bool,
#[serde(rename = "hate/threatening")]
/// Hateful content that also includes violence or serious harm towards the
/// targeted group based on race, gender, ethnicity, religion, nationality,
/// sexual orientation, disability status, or caste.
pub hate_threatening: bool,
/// Content that expresses, incites, or promotes harassing language towards any target.
pub harassment: bool,
/// Harassment content that also includes violence or serious harm towards any target.
#[serde(rename = "harassment/threatening")]
pub harassment_threatening: bool,
/// Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders.
#[serde(rename = "self-harm")]
pub self_harm: bool,
/// Content where the speaker expresses that they are engaging or intend to engage in acts of self-harm, such as suicide, cutting, and eating disorders.
#[serde(rename = "self-harm/intent")]
pub self_harm_intent: bool,
/// Content that encourages performing acts of self-harm, such as suicide, cutting, and eating disorders, or that gives instructions or advice on how to commit such acts.
#[serde(rename = "self-harm/instructions")]
pub self_harm_instructions: bool,
/// Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness).
pub sexual: bool,
/// Sexual content that includes an individual who is under 18 years old.
#[serde(rename = "sexual/minors")]
pub sexual_minors: bool,
/// Content that depicts death, violence, or physical injury.
pub violence: bool,
/// Content that depicts death, violence, or physical injury in graphic detail.
#[serde(rename = "violence/graphic")]
pub violence_graphic: bool,
}
/// A list of the categories along with their scores as predicted by model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CategoryScore {
/// The score for the category 'hate'.
pub hate: f32,
/// The score for the category 'hate/threatening'.
#[serde(rename = "hate/threatening")]
pub hate_threatening: f32,
/// The score for the category 'harassment'.
pub harassment: f32,
/// The score for the category 'harassment/threatening'.
#[serde(rename = "harassment/threatening")]
pub harassment_threatening: f32,
/// The score for the category 'self-harm'.
#[serde(rename = "self-harm")]
pub self_harm: f32,
/// The score for the category 'self-harm/intent'.
#[serde(rename = "self-harm/intent")]
pub self_harm_intent: f32,
/// The score for the category 'self-harm/instructions'.
#[serde(rename = "self-harm/instructions")]
pub self_harm_instructions: f32,
/// The score for the category 'sexual'.
pub sexual: f32,
/// The score for the category 'sexual/minors'.
#[serde(rename = "sexual/minors")]
pub sexual_minors: f32,
/// The score for the category 'violence'.
pub violence: f32,
/// The score for the category 'violence/graphic'.
#[serde(rename = "violence/graphic")]
pub violence_graphic: f32,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ContentModerationResult {
/// Whether the content violates [OpenAI's usage policies](https://platform.openai.com/policies/usage-policies).
pub flagged: bool,
/// A list of the categories, and whether they are flagged or not.
pub categories: Category,
/// A list of the categories along with their scores as predicted by model.
pub category_scores: CategoryScore,
}
/// Represents policy compliance report by OpenAI's content moderation model against a given input.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CreateModerationResponse {
/// The unique identifier for the moderation request.
pub id: String,
/// The model used to generate the moderation results.
pub model: String,
/// A list of moderation objects.
pub results: Vec<ContentModerationResult>,
}
#[derive(Debug, Default, Clone, PartialEq)]
pub struct FileInput {
pub source: InputSource,
}
#[derive(Debug, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateFileRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFileRequest {
/// The file object to be uploaded.
///
/// If the `purpose` is set to "fine-tune", the file will be used for fine-tuning.
pub file: FileInput,
/// The intended purpose of the uploaded file.
///
/// Use "fine-tune" for [fine-tuning](https://platform.openai.com/docs/api-reference/fine-tuning).
/// This allows us to validate the format of the uploaded file is correct for fine-tuning.
pub purpose: String,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFilesResponse {
pub object: String,
pub data: Vec<OpenAIFile>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct DeleteFileResponse {
pub id: String,
pub object: String,
pub deleted: bool,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub enum OpenAIFilePurpose {
#[serde(rename = "fine-tune")]
FineTune,
#[serde(rename = "fine-tune-results")]
FineTuneResults,
#[serde(rename = "assistants")]
Assistants,
#[serde(rename = "assistants_output")]
AssistantsOutput,
}
/// The `File` object represents a document that has been uploaded to OpenAI.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct OpenAIFile {
/// The file identifier, which can be referenced in the API endpoints.
pub id: String,
/// The object type, which is always "file".
pub object: String,
/// The size of the file in bytes.
pub bytes: u32,
/// The Unix timestamp (in seconds) for when the file was created.
pub created_at: u32,
/// The name of the file.
pub filename: String,
/// The intended purpose of the file. Supported values are `fine-tune`, `fine-tune-results`, `assistants`, and `assistants_output`.
pub purpose: OpenAIFilePurpose,
/// Deprecated. The current status of the file, which can be either `uploaded`, `processed`, or `error`.
#[deprecated]
pub status: Option<String>,
/// Deprecated. For details on why a fine-tuning training file failed validation, see the `error` field on `fine_tuning.job`.
#[deprecated]
pub status_details: Option<String>, // nullable: true
}
#[derive(Debug, Serialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuneRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuneRequest {
/// The ID of an uploaded file that contains training data.
///
/// See [upload file](https://platform.openai.com/docs/api-reference/files/upload) for how to upload a file.
///
/// Your dataset must be formatted as a JSONL file, where each training
/// example is a JSON object with the keys "prompt" and "completion".
/// Additionally, you must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning/creating-training-data) for more details.
pub training_file: String,
/// The ID of an uploaded file that contains validation data.
///
/// If you provide this file, the data is used to generate validation
/// metrics periodically during fine-tuning. These metrics can be viewed in
/// the [fine-tuning results file](https://platform.openai.com/docs/guides/fine-tuning/analyzing-your-fine-tuned-model).
/// Your train and validation data should be mutually exclusive.
///
/// Your dataset must be formatted as a JSONL file, where each validation
/// example is a JSON object with the keys "prompt" and "completion".
/// Additionally, you must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning/creating-training-data) for more details.
#[serde(skip_serializing_if = "Option::is_none")]
pub validation_file: Option<String>,
/// The name of the base model to fine-tune. You can select one of "ada",
/// "babbage", "curie", "davinci", or a fine-tuned model created after 2022-04-21.
/// To learn more about these models, see the [Models](https://platform.openai.com/docs/models) documentation.
#[serde(skip_serializing_if = "Option::is_none")]
pub model: Option<String>,
/// The number of epochs to train the model for. An epoch refers to one
/// full cycle through the training dataset.
#[serde(skip_serializing_if = "Option::is_none")]
pub n_epochs: Option<u32>, // default: 4
/// The batch size to use for training. The batch size is the number of
/// training examples used to train a single forward and backward pass.
///
/// By default, the batch size will be dynamically configured to be
/// ~0.2% of the number of examples in the training set, capped at 256 -
/// in general, we've found that larger batch sizes tend to work better
/// for larger datasets.
#[serde(skip_serializing_if = "Option::is_none")]
pub batch_size: Option<u32>, // default: null
/// The learning rate multiplier to use for training.
/// The fine-tuning learning rate is the original learning rate used for
/// pretraining multiplied by this value.
///
/// By default, the learning rate multiplier is the 0.05, 0.1, or 0.2
/// depending on final `batch_size` (larger learning rates tend to
/// perform better with larger batch sizes). We recommend experimenting
/// with values in the range 0.02 to 0.2 to see what produces the best
/// results.
#[serde(skip_serializing_if = "Option::is_none")]
pub learning_rate_multiplier: Option<f32>, // default: null
/// The weight to use for loss on the prompt tokens. This controls how
/// much the model tries to learn to generate the prompt (as compared
/// to the completion which always has a weight of 1.0), and can add
/// a stabilizing effect to training when completions are short.
///
/// If prompts are extremely long (relative to completions), it may make
/// sense to reduce this weight so as to avoid over-prioritizing
/// learning the prompt.
#[serde(skip_serializing_if = "Option::is_none")]
pub prompt_loss_weight: Option<f32>, // default: 0.01
/// If set, we calculate classification-specific metrics such as accuracy
/// and F-1 score using the validation set at the end of every epoch.
/// These metrics can be viewed in the [results file](https://platform.openai.com/docs/guides/fine-tuning/analyzing-your-fine-tuned-model).
///
/// In order to compute classification metrics, you must provide a
/// `validation_file`. Additionally, you must
/// specify `classification_n_classes` for multiclass classification or
/// `classification_positive_class` for binary classification.
#[serde(skip_serializing_if = "Option::is_none")]
pub compute_classification_metrics: Option<bool>, // default: false
/// The number of classes in a classification task.
///
/// This parameter is required for multiclass classification.
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_n_classes: Option<u32>, // default: null
/// The positive class in binary classification.
///
/// This parameter is needed to generate precision, recall, and F1
/// metrics when doing binary classification.
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_positive_class: Option<String>, // default: null
/// If this is provided, we calculate F-beta scores at the specified
/// beta values. The F-beta score is a generalization of F-1 score.
/// This is only used for binary classification.
///
/// With a beta of 1 (i.e. the F-1 score), precision and recall are
/// given the same weight. A larger beta score puts more weight on
/// recall and less on precision. A smaller beta score puts more weight
/// on precision and less on recall.
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_betas: Option<Vec<f32>>, // default: null
/// A string of up to 40 characters that will be added to your fine-tuned model name.
///
/// For example, a `suffix` of "custom-model-name" would produce a model name like `ada:ft-your-org:custom-model-name-2022-02-15-04-21-04`.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null, minLength:1, maxLength:40
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneResponse {
pub object: String,
pub data: Vec<FineTune>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTune {
pub id: String,
pub object: String,
pub created_at: u32,
pub updated_at: u32,
pub model: String,
pub fine_tuned_model: Option<String>, // nullable: true
pub organization_id: String,
pub status: String,
pub hyperparams: serde_json::Value,
pub training_files: Vec<OpenAIFile>,
pub validation_files: Vec<OpenAIFile>,
pub result_files: Vec<OpenAIFile>,
pub events: Option<Vec<FineTuneEvent>>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneEvent {
pub object: String,
pub created_at: u32,
pub level: String,
pub message: String,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneEventsResponse {
pub object: String,
pub data: Vec<FineTuneEvent>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneEventsStreamResponse {
pub object: String,
pub data: Option<Vec<FineTuneEvent>>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type FineTuneEventsResponseStream =
Pin<Box<dyn Stream<Item = Result<ListFineTuneEventsStreamResponse, OpenAIError>> + Send>>;
//// Start Fine Tuning
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(untagged)]
pub enum NEpochs {
NEpochs(u8),
#[default]
#[serde(rename = "auto")]
Auto,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
pub struct Hyperparameters {
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
///
/// "auto" decides the optimal number of epochs based on the size of the dataset.
/// If setting the number manually, we support any number between 1 and 50 epochs.
pub n_epochs: NEpochs,
}
#[derive(Debug, Serialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuningJobRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuningJobRequest {
/// The name of the model to fine-tune. You can select one of the
/// [supported models](https://platform.openai.com/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
pub model: String,
/// The ID of an uploaded file that contains training data.
///
/// See [upload file](https://platform.openai.com/docs/api-reference/files/upload) for how to upload a file.
///
/// Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
pub training_file: String,
/// The hyperparameters used for the fine-tuning job.
pub hyperparameters: Option<Hyperparameters>,
/// A string of up to 18 characters that will be added to your fine-tuned model name.
///
/// For example, a `suffix` of "custom-model-name" would produce a model name
/// like `ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null, minLength:1, maxLength:40
/// The ID of an uploaded file that contains validation data.
///
/// If you provide this file, the data is used to generate validation
/// metrics periodically during fine-tuning. These metrics can be viewed in
/// the fine-tuning results file.
/// The same data should not be present in both train and validation files.
///
/// Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning) for more details.
#[serde(skip_serializing_if = "Option::is_none")]
pub validation_file: Option<String>,
}
/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneJobError {
/// A machine-readable error code.
pub code: String,
/// A human-readable error message.
pub message: String,
/// The parameter that was invalid, usually `training_file` or `validation_file`.
/// This field will be null if the failure was not parameter-specific.
pub param: Option<String>, // nullable true
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FineTuningJobStatus {
ValidatingFiles,
Queued,
Running,
Succeeded,
Failed,
Cancelled,
}
/// The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuningJob {
/// The object identifier, which can be referenced in the API endpoints.
pub id: String,
/// The Unix timestamp (in seconds) for when the fine-tuning job was created.
pub created_at: u32,
/// For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
pub error: Option<FineTuneJobError>,
/// The name of the fine-tuned model that is being created.
/// The value will be null if the fine-tuning job is still running.
pub fine_tuned_model: Option<String>, // nullable: true
/// The Unix timestamp (in seconds) for when the fine-tuning job was finished.
/// The value will be null if the fine-tuning job is still running.
pub finished_at: Option<u32>, // nullable true
/// The hyperparameters used for the fine-tuning job.
/// See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
pub hyperparameters: Hyperparameters,
/// The base model that is being fine-tuned.
pub model: String,
/// The object type, which is always "fine_tuning.job".
pub object: String,
/// The organization that owns the fine-tuning job.
pub organization_id: String,
/// The compiled results file ID(s) for the fine-tuning job.
/// You can retrieve the results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub result_files: Vec<String>,
/// The current status of the fine-tuning job, which can be either
/// `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
pub status: FineTuningJobStatus,
/// The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
pub trained_tokens: Option<u32>,
/// The file ID used for training. You can retrieve the training data with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub training_file: String,
/// The file ID used for validation. You can retrieve the validation results with the [Files API](https://platform.openai.com/docs/api-reference/files/retrieve-contents).
pub validation_file: Option<String>,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListPaginatedFineTuningJobsResponse {
pub data: Vec<FineTuningJob>,
pub has_more: bool,
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct ListFineTuningJobEventsResponse {
pub data: Vec<FineTuningJobEvent>,
pub object: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Level {
Info,
Warn,
Error,
}
///Fine-tuning job event object
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
pub struct FineTuningJobEvent {
pub id: String,
pub created_at: u32,
pub level: Level,
pub message: String,
pub object: String,
}
//// End Fine Tuning
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct DeleteModelResponse {
pub id: String,
pub object: String,
pub deleted: bool,
}
#[derive(Debug, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum EmbeddingInput {
String(String),
StringArray(Vec<String>),
// Minimum value is 0, maximum value is 100257 (inclusive).
IntegerArray(Vec<u32>),
ArrayOfIntegerArray(Vec<Vec<u32>>),
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum EncodingFormat {
#[default]
Float,
Base64,
}
#[derive(Debug, Serialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateEmbeddingRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateEmbeddingRequest {
/// ID of the model to use. You can use the
/// [List models](https://platform.openai.com/docs/api-reference/models/list)
/// API to see all of your available models, or see our
/// [Model overview](https://platform.openai.com/docs/models/overview)
/// for descriptions of them.
pub model: String,
/// Input text to embed, encoded as a string or array of tokens. To embed multiple
/// inputs in a single request, pass an array of strings or array of token arrays.
/// The input must not exceed the max input tokens for the model (8192 tokens for
/// `text-embedding-ada-002`) and cannot be an empty string.
/// [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
pub input: EmbeddingInput,
/// The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). Defaults to float
#[serde(skip_serializing_if = "Option::is_none")]
pub encoding_format: Option<EncodingFormat>,
/// A unique identifier representing your end-user, which will help OpenAI
/// to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
/// Represents an embedding vector returned by embedding endpoint.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Embedding {
/// The index of the embedding in the list of embeddings.
pub index: u32,
/// The object type, which is always "embedding".
pub object: String,
/// The embedding vector, which is a list of floats. The length of vector
/// depends on the model as listed in the [embedding guide](https://platform.openai.com/docs/guides/embeddings).
pub embedding: Vec<f32>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct EmbeddingUsage {
/// The number of tokens used by the prompt.
pub prompt_tokens: u32,
/// The total number of tokens used by the request.
pub total_tokens: u32,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateEmbeddingResponse {
pub object: String,
/// The name of the model used to generate the embedding.
pub model: String,
/// The list of embeddings generated by the model.
pub data: Vec<Embedding>,
/// The usage information for the request.
pub usage: EmbeddingUsage,
}
#[derive(Debug, Serialize, Deserialize, Clone, Copy, Default, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Role {
System,
#[default]
User,
Assistant,
Tool,
Function,
}
/// The name and arguments of a function that should be called, as generated by the model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FunctionCall {
/// The name of the function to call.
pub name: String,
/// The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
pub arguments: String,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestSystemMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestSystemMessage {
/// The contents of the system message.
pub content: Option<String>,
/// The role of the messages author, in this case `system`.
#[builder(default = "Role::System")]
pub role: Role,
/// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestMessageContentPartTextArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestMessageContentPartText {
#[builder(default = "\"text\".into()")]
pub r#type: String,
pub text: String,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageUrlDetail {
#[default]
Auto,
Low,
High,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ImageUrlArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ImageUrl {
/// Either a URL of the image or the base64 encoded image data.
pub url: String,
/// Specifies the detail level of the image.
pub detail: ImageUrlDetail,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestMessageContentPartImageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestMessageContentPartImage {
#[builder(default = "\"image_url\".into()")]
pub r#type: String,
pub image_url: ImageUrl,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionRequestMessageContentPart {
Text(ChatCompletionRequestMessageContentPartText),
Image(ChatCompletionRequestMessageContentPartImage),
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionRequestUserMessageContent {
/// The text contents of the message.
Text(String),
/// An array of content parts with a defined type, each can be of type `text` or `image_url`
/// when passing in images. You can pass multiple images by adding multiple `image_url` content parts.
/// Image input is only supported when using the `gpt-4-visual-preview` model.
Array(Vec<ChatCompletionRequestMessageContentPart>),
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestUserMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestUserMessage {
/// The contents of the user message.
pub content: Option<ChatCompletionRequestUserMessageContent>,
/// The role of the messages author, in this case `user`.
#[builder(default = "Role::User")]
pub role: Role,
/// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestAssistantMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestAssistantMessage {
/// The contents of the assistant message.
pub content: Option<String>,
/// The role of the messages author, in this case `assistant`.
#[builder(default = "Role::Assistant")]
pub role: Role,
/// An optional name for the participant. Provides the model information to differentiate between participants of the same role.
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub tool_calls: Option<Vec<ChatCompletionMessageToolCall>>,
/// Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model.
#[deprecated]
#[serde(skip_serializing_if = "Option::is_none")]
pub function_call: Option<FunctionCall>,
}
/// Tool message
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestToolMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestToolMessage {
/// The role of the messages author, in this case `tool`.
#[builder(default = "Role::Tool")]
pub role: Role,
/// The contents of the tool message.
pub content: Option<String>,
pub tool_call_id: String,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestFunctionMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestFunctionMessage {
/// The role of the messages author, in this case `function`.
#[builder(default = "Role::Function")]
pub role: Role,
/// The return value from the function call, to return to the model.
pub content: Option<String>,
/// The name of the function to call.
pub name: String,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionRequestMessage {
System(ChatCompletionRequestSystemMessage),
User(ChatCompletionRequestUserMessage),
Assistant(ChatCompletionRequestAssistantMessage),
Tool(ChatCompletionRequestToolMessage),
Function(ChatCompletionRequestFunctionMessage),
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionMessageToolCall {
/// The ID of the tool call.
pub id: String,
/// The type of the tool. Currently, only `function` is supported.
pub r#type: ChatCompletionToolType,
/// The function that the model called.
pub function: FunctionCall,
}
/// A chat completion message generated by the model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseMessage {
/// The contents of the message.
pub content: Option<String>,
/// The tool calls generated by the model, such as function calls.
pub tool_calls: Option<Vec<ChatCompletionMessageToolCall>>,
/// The role of the author of this message.
pub role: Role,
/// Deprecated and replaced by `tool_calls`.
/// The name and arguments of a function that should be called, as generated by the model.
#[deprecated]
pub function_call: Option<FunctionCall>,
}
#[derive(Clone, Serialize, Default, Debug, Deserialize, Builder, PartialEq)]
#[builder(name = "ChatCompletionFunctionsArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionFunctions {
/// The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
pub name: String,
/// A description of what the function does, used by the model to choose when and how to call the function.
#[serde(skip_serializing_if = "Option::is_none")]
pub description: Option<String>,
/// The parameters the functions accepts, described as a JSON Schema object.
/// See the [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for examples,
/// and the [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for
/// documentation about the format.
///
/// To describe a function that accepts no parameters, provide the
/// value `{\"type\": \"object\", \"properties\": {}}`.
pub parameters: serde_json::Value,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum ChatCompletionResponseFormatType {
Text,
JsonObject,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseFormat {
/// Setting to `json_object` enables JSON mode. This guarantees that the message the model generates is valid JSON.
///
/// Note that your system prompt must still instruct the model to produce JSON, and to help ensure you don't forget,
/// the API will throw an error if the string `JSON` does not appear in your system message. Also note that the message
/// content may be partial (i.e. cut off) if `finish_reason="length"`, which indicates the generation
/// exceeded `max_tokens` or the conversation exceeded the max context length.
///
/// Must be one of `text` or `json_object`.
pub r#type: ChatCompletionResponseFormatType,
}
#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ChatCompletionToolType {
#[default]
Function,
}
#[derive(Clone, Serialize, Default, Debug, Builder, Deserialize, PartialEq)]
#[builder(name = "ChatCompletionToolArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionTool {
#[builder(default = "ChatCompletionToolType::Function")]
pub r#type: ChatCompletionToolType,
pub function: ChatCompletionFunctions,
}
#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
pub struct FunctionName {
/// The name of the function to call.
pub name: String,
}
/// Specifies a tool the model should use. Use to force the model to call a specific function.
#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
pub struct ChatCompletionNamedToolChoice {
/// The type of the tool. Currently, only `function` is supported.
pub r#type: ChatCompletionToolType,
pub function: FunctionName,
}
/// Controls which (if any) function is called by the model.
/// `none` means the model will not call a function and instead generates a message.
/// `auto` means the model can pick between generating a message or calling a function.
/// Specifying a particular function via `{"type: "function", "function": {"name": "my_function"}}` forces the model to call that function.
/// `none` is the default when no functions are present. `auto` is the default if functions are present.
#[derive(Clone, Serialize, Default, Debug, Deserialize, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ChatCompletionToolChoiceOption {
#[default]
None,
Auto,
#[serde(untagged)]
Named(ChatCompletionNamedToolChoice),
}
#[derive(Clone, Serialize, Default, Debug, Builder, Deserialize, PartialEq)]
#[builder(name = "CreateChatCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateChatCompletionRequest {
/// A list of messages comprising the conversation so far. [Example Python code](https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models).
pub messages: Vec<ChatCompletionRequestMessage>, // min: 1
/// ID of the model to use.
/// See the [model endpoint compatibility](https://platform.openai.com/docs/models/model-endpoint-compatibility) table for details on which models work with the Chat API.
pub model: String,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100.
/// Mathematically, the bias is added to the logits generated by the model prior to sampling.
/// The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection;
/// values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
#[serde(skip_serializing_if = "Option::is_none")]
pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the chat completion.
///
/// The total length of input tokens and generated tokens is limited by the model's context length. [Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb) for counting tokens.
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u16>,
/// How many chat completion choices to generate for each input message.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1, max: 128, default: 1
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0
/// An object specifying the format that the model must output.
///
/// Setting to `{ "type": "json_object" }` enables JSON mode, which guarantees the message the model generates is valid JSON.
///
/// **Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in increased latency and appearance of a "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length.
#[serde(skip_serializing_if = "Option::is_none")]
pub response_format: Option<ChatCompletionResponseFormat>,
/// This feature is in Beta.
/// If specified, our system will make a best effort to sample deterministically, such that repeated requests
/// with the same `seed` and parameters should return the same result.
/// Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
#[serde(skip_serializing_if = "Option::is_none")]
pub seed: Option<i64>,
/// Up to 4 sequences where the API will stop generating further tokens.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<Stop>,
/// If set, partial message deltas will be sent, like in ChatGPT.
/// Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
/// as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
#[serde(skip_serializing_if = "Option::is_none")]
pub stream: Option<bool>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random,
/// while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min: 0, max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling,
/// where the model considers the results of the tokens with top_p probability mass.
/// So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
/// A list of tools the model may call. Currently, only functions are supported as a tool.
/// Use this to provide a list of functions the model may generate JSON inputs for.
#[serde(skip_serializing_if = "Option::is_none")]
pub tools: Option<Vec<ChatCompletionTool>>,
#[serde(skip_serializing_if = "Option::is_none")]
pub tool_choice: Option<ChatCompletionToolChoiceOption>,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
/// Controls how the model responds to function calls.
/// "none" means the model does not call a function, and responds to the end-user.
/// "auto" means the model can pick between an end-user or calling a function.
/// Specifying a particular function via `{"name":\ "my_function"}` forces the model to call that function.
/// "none" is the default when no functions are present. "auto" is the default if functions are present.
#[deprecated]
#[serde(skip_serializing_if = "Option::is_none")]
pub function_call: Option<ChatCompletionFunctionCall>,
/// A list of functions the model may generate JSON inputs for.
#[deprecated]
#[serde(skip_serializing_if = "Option::is_none")]
pub functions: Option<Vec<ChatCompletionFunctions>>,
}
#[derive(Debug, Serialize, Deserialize, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum FinishReason {
Stop,
Length,
ToolCalls,
ContentFilter,
FunctionCall,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatChoice {
/// The index of the choice in the list of choices.
pub index: u32,
pub message: ChatCompletionResponseMessage,
/// The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence,
/// `length` if the maximum number of tokens specified in the request was reached,
/// `content_filter` if content was omitted due to a flag from our content filters,
/// `tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function.
pub finish_reason: Option<FinishReason>,
}
/// Represents a chat completion response returned by model, based on the provided input.
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateChatCompletionResponse {
/// A unique identifier for the chat completion.
pub id: String,
/// A list of chat completion choices. Can be more than one if `n` is greater than 1.
pub choices: Vec<ChatChoice>,
/// The Unix timestamp (in seconds) of when the chat completion was created.
pub created: u32,
/// The model used for the chat completion.
pub model: String,
/// This fingerprint represents the backend configuration that the model runs with.
///
/// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
pub system_fingerprint: Option<String>,
/// The object type, which is always `chat.completion`.
pub object: String,
pub usage: Option<CompletionUsage>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type ChatCompletionResponseStream =
Pin<Box<dyn Stream<Item = Result<CreateChatCompletionStreamResponse, OpenAIError>> + Send>>;
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FunctionCallStream {
/// The name of the function to call.
pub name: Option<String>,
/// The arguments to call the function with, as generated by the model in JSON format.
/// Note that the model does not always generate valid JSON, and may hallucinate
/// parameters not defined by your function schema. Validate the arguments in your
/// code before calling your function.
pub arguments: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionMessageToolCallChunk {
pub index: i32,
/// The ID of the tool call.
pub id: Option<String>,
/// The type of the tool. Currently, only `function` is supported.
pub r#type: Option<ChatCompletionToolType>,
pub function: Option<FunctionCallStream>,
}
/// A chat completion delta generated by streamed model responses.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionStreamResponseDelta {
/// The contents of the chunk message.
pub content: Option<String>,
/// The name and arguments of a function that should be called, as generated by the model.
#[deprecated]
pub function_call: Option<FunctionCallStream>,
pub tool_calls: Option<Vec<ChatCompletionMessageToolCallChunk>>,
/// The role of the author of this message.
pub role: Option<Role>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseStreamMessage {
/// The index of the choice in the list of choices.
pub index: u32,
pub delta: ChatCompletionStreamResponseDelta,
pub finish_reason: Option<FinishReason>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
/// Represents a streamed chunk of a chat completion response returned by model, based on the provided input.
pub struct CreateChatCompletionStreamResponse {
/// A unique identifier for the chat completion. Each chunk has the same ID.
pub id: String,
/// A list of chat completion choices. Can be more than one if `n` is greater than 1.
pub choices: Vec<ChatCompletionResponseStreamMessage>,
/// The Unix timestamp (in seconds) of when the chat completion was created. Each chunk has the same timestamp.
pub created: u32,
/// The model to generate the completion.
pub model: String,
/// This fingerprint represents the backend configuration that the model runs with.
/// Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
pub system_fingerprint: Option<String>,
/// The object type, which is always `chat.completion.chunk`.
pub object: String,
}
#[derive(Debug, Default, Clone, PartialEq)]
pub struct AudioInput {
pub source: InputSource,
}
#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum AudioResponseFormat {
#[default]
Json,
Text,
Srt,
VerboseJson,
Vtt,
}
#[derive(Debug, Serialize, Default, Clone, Copy, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum SpeechResponseFormat {
#[default]
Mp3,
Opus,
Aac,
Flac,
}
#[derive(Debug, Default, Serialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
#[non_exhaustive]
pub enum Voice {
#[default]
Alloy,
Echo,
Fable,
Onyx,
Nova,
Shimmer,
#[serde(untagged)]
Other(String),
}
#[derive(Debug, Default, Serialize, Clone, PartialEq)]
pub enum SpeechModel {
#[default]
#[serde(rename = "tts-1")]
Tts1,
#[serde(rename = "tts-1-hd")]
Tts1Hd,
#[serde(untagged)]
Other(String),
}
#[derive(Clone, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateTranscriptionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateTranscriptionRequest {
/// The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
pub file: AudioInput,
/// ID of the model to use. Only `whisper-1` is currently available.
pub model: String,
/// An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should match the audio language.
pub prompt: Option<String>,
/// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
pub response_format: Option<AudioResponseFormat>,
/// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
pub temperature: Option<f32>, // default: 0
/// The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency.
pub language: Option<String>,
}
#[derive(Debug, Deserialize, Clone, Serialize)]
pub struct CreateTranscriptionResponse {
pub text: String,
}
#[derive(Clone, Default, Debug, Builder, PartialEq, Serialize)]
#[builder(name = "CreateSpeechRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateSpeechRequest {
/// The text to generate audio for. The maximum length is 4096 characters.
pub input: String,
/// One of the available [TTS models](https://platform.openai.com/docs/models/tts): `tts-1` or `tts-1-hd`
pub model: SpeechModel,
/// The voice to use when generating the audio. Supported voices are `alloy`, `echo`, `fable`, `onyx`, `nova`, and `shimmer`.
pub voice: Voice,
/// The format to audio in. Supported formats are mp3, opus, aac, and flac.
#[serde(skip_serializing_if = "Option::is_none")]
pub response_format: Option<SpeechResponseFormat>,
/// The speed of the generated audio. Select a value from 0.25 to 4.0. 1.0 is the default.
#[serde(skip_serializing_if = "Option::is_none")]
pub speed: Option<f32>, // default: 1.0
}
#[derive(Clone, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateTranslationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateTranslationRequest {
/// The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
pub file: AudioInput,
/// ID of the model to use. Only `whisper-1` is currently available.
pub model: String,
/// An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should be in English.
pub prompt: Option<String>,
/// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
pub response_format: Option<AudioResponseFormat>,
/// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
pub temperature: Option<f32>, // default: 0
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateTranslationResponse {
pub text: String,
}
#[derive(Debug, Clone)]
pub struct CreateSpeechResponse {
pub bytes: Bytes,
}