1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
use std::{collections::HashMap, path::PathBuf, pin::Pin};
use derive_builder::Builder;
use futures::Stream;
use serde::{Deserialize, Serialize};
use crate::error::OpenAIError;
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Model {
pub id: String,
pub object: String,
pub created: u32,
pub owned_by: String,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListModelResponse {
pub object: String,
pub data: Vec<Model>,
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Prompt {
String(String),
StringArray(Vec<String>),
// Minimum value is 0, maximum value is 50256 (inclusive).
IntegerArray(Vec<u16>),
ArrayOfIntegerArray(Vec<Vec<u16>>),
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum Stop {
String(String), // nullable: true
StringArray(Vec<String>), // minItems: 1; maxItems: 4
}
#[derive(Debug, Serialize, Deserialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ChatCompletionFunctionCall {
String(String),
Object(serde_json::Value),
}
#[derive(Clone, Serialize, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateCompletionRequest {
/// ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them.
pub model: String,
/// The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
///
/// Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
#[serde(skip_serializing_if = "Option::is_none")]
pub prompt: Option<Prompt>,
/// The suffix that comes after a completion of inserted text.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null
/// The maximum number of [tokens](/tokenizer) to generate in the completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
#[serde(skip_serializing_if = "Option::is_none")]
pub max_tokens: Option<u16>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min: 0, max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
/// How many completions to generate for each prompt.
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
///
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max: 128, default: 1
/// Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
/// as they become available, with the stream terminated by a `data: [DONE]` message.
#[serde(skip_serializing_if = "Option::is_none")]
pub stream: Option<bool>, // nullable: true
/// Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
/// The maximum value for `logprobs` is 5. If you need more than this, please contact us through our [Help center](https://help.openai.com) and describe your use case.
#[serde(skip_serializing_if = "Option::is_none")]
pub logprobs: Option<u8>, // min:0 , max: 5, default: null, nullable: true
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
pub echo: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<Stop>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0
/// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
///
/// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
///
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
pub best_of: Option<u8>, //min: 0, max: 20, default: 1
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
///
/// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
#[serde(skip_serializing_if = "Option::is_none")]
pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Logprobs {
pub tokens: Vec<String>,
pub token_logprobs: Vec<Option<f32>>, // Option is to account for null value in the list
pub top_logprobs: Vec<serde_json::Value>,
pub text_offset: Vec<u32>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Choice {
pub text: String,
pub index: u32,
pub logprobs: Option<Logprobs>,
pub finish_reason: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Usage {
pub prompt_tokens: u32,
pub completion_tokens: u32,
pub total_tokens: u32,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateCompletionResponse {
pub id: String,
pub object: String,
pub created: u32,
pub model: String,
pub choices: Vec<Choice>,
pub usage: Option<Usage>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type CompletionResponseStream =
Pin<Box<dyn Stream<Item = Result<CreateCompletionResponse, OpenAIError>> + Send>>;
#[derive(Debug, Clone, Serialize, Default, Builder, PartialEq)]
#[builder(name = "CreateEditRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateEditRequest {
/// ID of the model to use. You can use the `text-davinci-edit-001` or `code-davinci-edit-001` model with this endpoint.
pub model: String,
/// The input text to use as a starting point for the edit.
#[serde(skip_serializing_if = "Option::is_none")]
pub input: Option<String>, // default ''
/// The instruction that tells the model how to edit the prompt.
pub instruction: String,
/// How many edits to generate for the input and instruction.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max: 20 default:1
/// What [sampling temperature](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277) to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min:0 ,max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateEditResponse {
pub object: String,
pub created: u32,
pub choices: Vec<Choice>,
pub usage: Usage,
}
#[derive(Default, Debug, Serialize, Clone, PartialEq)]
pub enum ImageSize {
#[serde(rename = "256x256")]
S256x256,
#[serde(rename = "512x512")]
S512x512,
#[default]
#[serde(rename = "1024x1024")]
S1024x1024,
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ResponseFormat {
#[default]
Url,
#[serde(rename = "b64_json")]
B64Json,
}
#[derive(Debug, Clone, Serialize, Default, Builder, PartialEq)]
#[builder(name = "CreateImageRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageRequest {
/// A text description of the desired image(s). The maximum length is 1000 characters.
pub prompt: String,
/// The number of images to generate. Must be between 1 and 10.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1 max:10 default:1
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
#[serde(skip_serializing_if = "Option::is_none")]
pub size: Option<ImageSize>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
#[serde(skip_serializing_if = "Option::is_none")]
pub response_format: Option<ResponseFormat>,
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum ImageData {
Url(std::sync::Arc<String>),
#[serde(rename = "b64_json")]
B64Json(std::sync::Arc<String>),
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ImageResponse {
pub created: u32,
pub data: Vec<std::sync::Arc<ImageData>>,
}
#[derive(Debug, Default, Clone, PartialEq)]
pub struct ImageInput {
pub path: PathBuf,
}
#[derive(Debug, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateImageEditRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageEditRequest {
/// The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask is not provided, image must have transparency, which will be used as the mask.
pub image: ImageInput,
/// An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
pub mask: Option<ImageInput>,
/// A text description of the desired image(s). The maximum length is 1000 characters.
pub prompt: String,
/// The number of images to generate. Must be between 1 and 10.
pub n: Option<u8>, // min:1 max:10 default:1
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
pub size: Option<ImageSize>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
pub response_format: Option<ResponseFormat>,
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
pub user: Option<String>,
}
#[derive(Debug, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateImageVariationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateImageVariationRequest {
/// The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square.
pub image: ImageInput,
/// The number of images to generate. Must be between 1 and 10.
pub n: Option<u8>, // min:1 max:10 default:1
/// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
pub size: Option<ImageSize>,
/// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
pub response_format: Option<ResponseFormat>,
/// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
pub user: Option<String>,
}
#[derive(Debug, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum ModerationInput {
String(String),
StringArray(Vec<String>),
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
pub enum TextModerationModel {
#[default]
#[serde(rename = "text-moderation-latest")]
Latest,
#[serde(rename = "text-moderation-stable")]
Stable,
}
#[derive(Debug, Default, Clone, Serialize, Builder, PartialEq)]
#[builder(name = "CreateModerationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateModerationRequest {
/// The input text to classify
pub input: ModerationInput,
/// Two content moderations models are available: `text-moderation-stable` and `text-moderation-latest`.
///
/// The default is `text-moderation-latest` which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use `text-moderation-stable`, we will provide advanced notice before updating the model. Accuracy of `text-moderation-stable` may be slightly lower than for `text-moderation-latest`.
#[serde(skip_serializing_if = "Option::is_none")]
pub model: Option<TextModerationModel>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Category {
pub hate: bool,
#[serde(rename = "hate/threatening")]
pub hate_threatening: bool,
#[serde(rename = "self-harm")]
pub self_harm: bool,
pub sexual: bool,
#[serde(rename = "sexual/minors")]
pub sexual_minors: bool,
pub violence: bool,
#[serde(rename = "violence/graphic")]
pub violence_graphic: bool,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CategoryScore {
pub hate: f32,
#[serde(rename = "hate/threatening")]
pub hate_threatening: f32,
#[serde(rename = "self-harm")]
pub self_harm: f32,
pub sexual: f32,
#[serde(rename = "sexual/minors")]
pub sexual_minors: f32,
pub violence: f32,
#[serde(rename = "violence/graphic")]
pub violence_graphic: f32,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ContentModerationResult {
pub flagged: bool,
pub categories: Category,
pub category_scores: CategoryScore,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct CreateModerationResponse {
pub id: String,
pub model: String,
pub results: Vec<ContentModerationResult>,
}
#[derive(Debug, Default, Clone, PartialEq)]
pub struct FileInput {
pub path: PathBuf,
}
#[derive(Debug, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateFileRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFileRequest {
/// Name of the [JSON Lines](https://jsonlines.readthedocs.io/en/latest/) file to be uploaded.
///
/// If the `purpose` is set to "fine-tune", each line is a JSON record with "prompt" and "completion" fields representing your [training examples](https://platform.openai.com/docs/guides/fine-tuning/prepare-training-data).
pub file: FileInput,
/// The intended purpose of the uploaded documents.
///
/// Use "fine-tune" for [Fine-tuning](https://platform.openai.com/docs/api-reference/fine-tunes). This allows us to validate the format of the uploaded file.
pub purpose: String,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFilesResponse {
pub object: String,
pub data: Vec<OpenAIFile>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct DeleteFileResponse {
pub id: String,
pub object: String,
pub deleted: bool,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct OpenAIFile {
pub id: String,
pub object: String,
pub bytes: u32,
pub created_at: u32,
pub filename: String,
pub purpose: String,
pub status: Option<String>,
pub status_details: Option<serde_json::Value>, // nullable: true
}
#[derive(Debug, Serialize, Clone, Default, Builder, PartialEq)]
#[builder(name = "CreateFineTuneRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateFineTuneRequest {
/// The ID of an uploaded file that contains training data.
///
/// See [upload file](https://platform.openai.com/docs/api-reference/files/upload) for how to upload a file.
///
/// Your dataset must be formatted as a JSONL file, where each training
/// example is a JSON object with the keys "prompt" and "completion".
/// Additionally, you must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning/creating-training-data) for more details.
pub training_file: String,
/// The ID of an uploaded file that contains validation data.
///
/// If you provide this file, the data is used to generate validation
/// metrics periodically during fine-tuning. These metrics can be viewed in
/// the [fine-tuning results file](https://platform.openai.com/docs/guides/fine-tuning/analyzing-your-fine-tuned-model).
/// Your train and validation data should be mutually exclusive.
///
/// Your dataset must be formatted as a JSONL file, where each validation
/// example is a JSON object with the keys "prompt" and "completion".
/// Additionally, you must upload your file with the purpose `fine-tune`.
///
/// See the [fine-tuning guide](https://platform.openai.com/docs/guides/fine-tuning/creating-training-data) for more details.
#[serde(skip_serializing_if = "Option::is_none")]
pub validation_file: Option<String>,
/// The name of the base model to fine-tune. You can select one of "ada",
/// "babbage", "curie", "davinci", or a fine-tuned model created after 2022-04-21.
/// To learn more about these models, see the [Models](https://platform.openai.com/docs/models) documentation.
#[serde(skip_serializing_if = "Option::is_none")]
pub model: Option<String>,
/// The number of epochs to train the model for. An epoch refers to one
/// full cycle through the training dataset.
#[serde(skip_serializing_if = "Option::is_none")]
pub n_epochs: Option<u32>, // default: 4
/// The batch size to use for training. The batch size is the number of
/// training examples used to train a single forward and backward pass.
///
/// By default, the batch size will be dynamically configured to be
/// ~0.2% of the number of examples in the training set, capped at 256 -
/// in general, we've found that larger batch sizes tend to work better
/// for larger datasets.
#[serde(skip_serializing_if = "Option::is_none")]
pub batch_size: Option<u32>, // default: null
/// The learning rate multiplier to use for training.
/// The fine-tuning learning rate is the original learning rate used for
/// pretraining multiplied by this value.
///
/// By default, the learning rate multiplier is the 0.05, 0.1, or 0.2
/// depending on final `batch_size` (larger learning rates tend to
/// perform better with larger batch sizes). We recommend experimenting
/// with values in the range 0.02 to 0.2 to see what produces the best
/// results.
#[serde(skip_serializing_if = "Option::is_none")]
pub learning_rate_multiplier: Option<f32>, // default: null
/// The weight to use for loss on the prompt tokens. This controls how
/// much the model tries to learn to generate the prompt (as compared
/// to the completion which always has a weight of 1.0), and can add
/// a stabilizing effect to training when completions are short.
///
/// If prompts are extremely long (relative to completions), it may make
/// sense to reduce this weight so as to avoid over-prioritizing
/// learning the prompt.
#[serde(skip_serializing_if = "Option::is_none")]
pub prompt_loss_weight: Option<f32>, // default: 0.01
/// If set, we calculate classification-specific metrics such as accuracy
/// and F-1 score using the validation set at the end of every epoch.
/// These metrics can be viewed in the [results file](https://platform.openai.com/docs/guides/fine-tuning/analyzing-your-fine-tuned-model).
///
/// In order to compute classification metrics, you must provide a
/// `validation_file`. Additionally, you must
/// specify `classification_n_classes` for multiclass classification or
/// `classification_positive_class` for binary classification.
#[serde(skip_serializing_if = "Option::is_none")]
pub compute_classification_metrics: Option<bool>, // default: false
/// The number of classes in a classification task.
///
/// This parameter is required for multiclass classification.
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_n_classes: Option<u32>, // default: null
/// The positive class in binary classification.
///
/// This parameter is needed to generate precision, recall, and F1
/// metrics when doing binary classification.
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_positive_class: Option<String>, // default: null
/// If this is provided, we calculate F-beta scores at the specified
/// beta values. The F-beta score is a generalization of F-1 score.
/// This is only used for binary classification.
///
/// With a beta of 1 (i.e. the F-1 score), precision and recall are
/// given the same weight. A larger beta score puts more weight on
/// recall and less on precision. A smaller beta score puts more weight
/// on precision and less on recall.
#[serde(skip_serializing_if = "Option::is_none")]
pub classification_betas: Option<Vec<f32>>, // default: null
/// A string of up to 40 characters that will be added to your fine-tuned model name.
///
/// For example, a `suffix` of "custom-model-name" would produce a model name like `ada:ft-your-org:custom-model-name-2022-02-15-04-21-04`.
#[serde(skip_serializing_if = "Option::is_none")]
pub suffix: Option<String>, // default: null, minLength:1, maxLength:40
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneResponse {
pub object: String,
pub data: Vec<FineTune>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTune {
pub id: String,
pub object: String,
pub created_at: u32,
pub updated_at: u32,
pub model: String,
pub fine_tuned_model: Option<String>, // nullable: true
pub organization_id: String,
pub status: String,
pub hyperparams: serde_json::Value,
pub training_files: Vec<OpenAIFile>,
pub validation_files: Vec<OpenAIFile>,
pub result_files: Vec<OpenAIFile>,
pub events: Option<Vec<FineTuneEvent>>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FineTuneEvent {
pub object: String,
pub created_at: u32,
pub level: String,
pub message: String,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct ListFineTuneEventsResponse {
pub object: String,
pub data: Vec<FineTuneEvent>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type FineTuneEventsResponseStream =
Pin<Box<dyn Stream<Item = Result<ListFineTuneEventsResponse, OpenAIError>> + Send>>;
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct DeleteModelResponse {
pub id: String,
pub object: String,
pub deleted: bool,
}
#[derive(Debug, Serialize, Clone, PartialEq)]
#[serde(untagged)]
pub enum EmbeddingInput {
String(String),
StringArray(Vec<String>),
// Minimum value is 0, maximum value is 100257 (inclusive).
IntegerArray(Vec<u32>),
ArrayOfIntegerArray(Vec<Vec<u32>>),
}
#[derive(Debug, Serialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "CreateEmbeddingRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateEmbeddingRequest {
/// ID of the model to use. You can use the
/// [List models](https://platform.openai.com/docs/api-reference/models/list)
/// API to see all of your available models, or see our
/// [Model overview](https://platform.openai.com/docs/models/overview)
/// for descriptions of them.
pub model: String,
/// Input text to get embeddings for, encoded as a string or array of tokens.
/// To get embeddings for multiple inputs in a single request, pass an array
/// of strings or array of token arrays. Each input must not exceed 8192
/// tokens in length.
pub input: EmbeddingInput,
/// A unique identifier representing your end-user, which will help OpenAI
/// to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/usage-policies/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct Embedding {
pub index: u32,
pub object: String,
pub embedding: Vec<f32>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct EmbeddingUsage {
pub prompt_tokens: u32,
pub total_tokens: u32,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateEmbeddingResponse {
pub object: String,
pub model: String,
pub data: Vec<Embedding>,
pub usage: EmbeddingUsage,
}
#[derive(Debug, Serialize, Deserialize, Clone, Default, PartialEq)]
#[serde(rename_all = "lowercase")]
pub enum Role {
System,
#[default]
User,
Assistant,
Function,
}
/// The name and arguments of a function that should be called, as generated by the model.
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct FunctionCall {
/// The name of the function to call.
pub name: String,
/// The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
pub arguments: String,
}
#[derive(Debug, Serialize, Deserialize, Default, Clone, Builder, PartialEq)]
#[builder(name = "ChatCompletionRequestMessageArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionRequestMessage {
/// The role of the messages author. One of `system`, `user`, `assistant`, or `function`.
pub role: Role,
/// The contents of the message.
/// `content` is required for all messages except assistant messages with function calls.
#[serde(skip_serializing_if = "Option::is_none")]
pub content: Option<String>,
/// The name of the author of this message. `name` is required if role is function,
/// and it should be the name of the function whose response is in the `content`.
/// May contain a-z, A-Z, 0-9, and underscores, with a maximum length of 64 characters.
#[serde(skip_serializing_if = "Option::is_none")]
pub name: Option<String>,
/// The name and arguments of a function that should be called, as generated by the model.
#[serde(skip_serializing_if = "Option::is_none")]
pub function_call: Option<FunctionCall>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseMessage {
pub role: Role,
pub content: Option<String>,
pub function_call: Option<FunctionCall>,
}
#[derive(Clone, Serialize, Default, Debug, Deserialize, Builder, PartialEq)]
#[builder(name = "ChatCompletionFunctionsArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct ChatCompletionFunctions {
/// The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
pub name: String,
/// The description of what the function does.
#[serde(skip_serializing_if = "Option::is_none")]
pub description: Option<String>,
/// The parameters the functions accepts, described as a JSON Schema object.
/// See the [guide](https://platform.openai.com/docs/guides/gpt/function-calling) for examples,
/// and the [JSON Schema](https://json-schema.org/understanding-json-schema/) reference for documentation about the format.
#[serde(skip_serializing_if = "Option::is_none")]
pub parameters: Option<serde_json::Value>,
}
#[derive(Clone, Serialize, Default, Debug, Builder, Deserialize, PartialEq)]
#[builder(name = "CreateChatCompletionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateChatCompletionRequest {
/// ID of the model to use.
/// See the [model endpoint compatibility](https://platform.openai.com/docs/models/model-endpoint-compatibility) table for details on which models work with the Chat API.
pub model: String,
/// A list of messages comprising the conversation so far. [Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb).
pub messages: Vec<ChatCompletionRequestMessage>, // min: 1
/// A list of functions the model may generate JSON inputs for.
#[serde(skip_serializing_if = "Option::is_none")]
pub functions: Option<Vec<ChatCompletionFunctions>>,
/// Controls how the model responds to function calls.
/// "none" means the model does not call a function, and responds to the end-user.
/// "auto" means the model can pick between an end-user or calling a function.
/// Specifying a particular function via `{"name":\ "my_function"}` forces the model to call that function.
/// "none" is the default when no functions are present. "auto" is the default if functions are present.
#[serde(skip_serializing_if = "Option::is_none")]
pub function_call: Option<ChatCompletionFunctionCall>,
/// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random,
/// while lower values like 0.2 will make it more focused and deterministic.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub temperature: Option<f32>, // min: 0, max: 2, default: 1,
/// An alternative to sampling with temperature, called nucleus sampling,
/// where the model considers the results of the tokens with top_p probability mass.
/// So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
pub top_p: Option<f32>, // min: 0, max: 1, default: 1
/// How many chat completion choices to generate for each input message.
#[serde(skip_serializing_if = "Option::is_none")]
pub n: Option<u8>, // min:1, max: 128, default: 1
/// If set, partial message deltas will be sent, like in ChatGPT.
/// Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format) as they become available,
/// with the stream terminated by a `data: [DONE]` message.[Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb).
#[serde(skip_serializing_if = "Option::is_none")]
pub stream: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens.
#[serde(skip_serializing_if = "Option::is_none")]
pub stop: Option<Stop>,
/// The maximum number of [tokens](https://platform.openai.com/tokenizer) to generate in the chat completion.
///
/// The total length of input tokens and generated tokens is limited by the model's context length. [Example Python code](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb) for counting tokens.
pub max_tokens: Option<u16>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties.](https://platform.openai.com/docs/api-reference/parameter-details)
#[serde(skip_serializing_if = "Option::is_none")]
pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100.
/// Mathematically, the bias is added to the logits generated by the model prior to sampling.
/// The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection;
/// values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
#[serde(skip_serializing_if = "Option::is_none")]
pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
pub user: Option<String>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatChoice {
pub index: u32,
pub message: ChatCompletionResponseMessage,
pub finish_reason: Option<String>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateChatCompletionResponse {
pub id: String,
pub object: String,
pub created: u32,
pub model: String,
pub usage: Option<Usage>,
pub choices: Vec<ChatChoice>,
}
/// Parsed server side events stream until an \[DONE\] is received from server.
pub type ChatCompletionResponseStream =
Pin<Box<dyn Stream<Item = Result<CreateChatCompletionStreamResponse, OpenAIError>> + Send>>;
// For reason (not documented by OpenAI) the response from stream is different
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatCompletionResponseStreamMessage {
pub content: Option<String>,
pub role: Option<Role>,
}
#[derive(Debug, Deserialize, Serialize, Clone, PartialEq)]
pub struct ChatChoiceDelta {
pub index: u32,
pub delta: ChatCompletionResponseStreamMessage,
pub finish_reason: Option<String>,
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateChatCompletionStreamResponse {
pub id: Option<String>,
pub object: String,
pub created: u32,
pub model: String,
pub choices: Vec<ChatChoiceDelta>,
pub usage: Option<Usage>,
}
#[derive(Debug, Default, Clone, PartialEq)]
pub struct AudioInput {
pub path: PathBuf,
}
#[derive(Debug, Serialize, Default, Clone, PartialEq)]
#[serde(rename_all = "snake_case")]
pub enum AudioResponseFormat {
#[default]
Json,
Text,
Srt,
VerboseJson,
Vtt,
}
#[derive(Clone, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateTranscriptionRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateTranscriptionRequest {
/// The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
pub file: AudioInput,
/// ID of the model to use. Only `whisper-1` is currently available.
pub model: String,
/// An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should match the audio language.
pub prompt: Option<String>,
/// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
pub response_format: Option<AudioResponseFormat>,
/// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
pub temperature: Option<f32>, // default: 0
/// The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency.
pub language: Option<String>,
}
#[derive(Debug, Deserialize, Clone, Serialize)]
pub struct CreateTranscriptionResponse {
pub text: String,
}
#[derive(Clone, Default, Debug, Builder, PartialEq)]
#[builder(name = "CreateTranslationRequestArgs")]
#[builder(pattern = "mutable")]
#[builder(setter(into, strip_option), default)]
#[builder(derive(Debug))]
#[builder(build_fn(error = "OpenAIError"))]
pub struct CreateTranslationRequest {
/// The audio file to transcribe, in one of these formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm.
pub file: AudioInput,
/// ID of the model to use. Only `whisper-1` is currently available.
pub model: String,
/// An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should be in English.
pub prompt: Option<String>,
/// The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt.
pub response_format: Option<AudioResponseFormat>,
/// The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
pub temperature: Option<f32>, // default: 0
}
#[derive(Debug, Deserialize, Clone, PartialEq, Serialize)]
pub struct CreateTranslationResponse {
pub text: String,
}