1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
use alloc::{boxed::Box, vec::Vec};
use std::{
cell::UnsafeCell,
convert::Infallible,
future::Future,
mem,
panic::{RefUnwindSafe, UnwindSafe},
pin::Pin,
ptr,
sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
sync::{Arc, Mutex},
task,
};
use super::{NEW, READY_BIT};
/// A Future which is executed exactly once, producing an output accessible without locking.
///
/// This is primarily used as a building block for [Lazy] and [ConstLazy], but can also be used on
/// its own similar to [OnceCell](crate::OnceCell).
///
/// ```
/// # async fn run() {
/// use std::sync::Arc;
/// use async_once_cell::unpin::OnceFuture;
///
/// let shared = Arc::new(OnceFuture::new());
/// let value : &i32 = shared.get_or_init_with(|| async {
/// 4
/// }).await;
/// assert_eq!(value, &4);
/// # }
/// ```
#[derive(Debug)]
pub struct OnceFuture<T, F = Pin<Box<dyn Future<Output = T> + Send>>, I = Infallible> {
value: UnsafeCell<LazyState<T, I>>,
inner: LazyInner<F>,
}
// Safety: acts like RwLock<T> + Mutex<(I,F)>.
unsafe impl<T: Sync + Send, F: Send, I: Send> Sync for OnceFuture<T, F, I> {}
unsafe impl<T: Send, F: Send, I: Send> Send for OnceFuture<T, F, I> {}
// We pin F inside the allocated LazyWaker; this object can be moved freely
impl<T, F, I> Unpin for OnceFuture<T, F, I> {}
// It is possible to get T and I with &mut self, and &T with &self
impl<T: RefUnwindSafe + UnwindSafe, F, I: RefUnwindSafe> RefUnwindSafe for OnceFuture<T, F, I> {}
impl<T: UnwindSafe, F, I: UnwindSafe> UnwindSafe for OnceFuture<T, F, I> {}
enum LazyState<T, I> {
New(I),
Running,
Ready(T),
}
#[derive(Debug)]
struct LazyInner<F> {
state: AtomicUsize,
queue: AtomicPtr<LazyWaker<F>>,
}
/// Contents of the Arc held by LazyInner and by any Waker given to the future. This value is
/// pinned in the Arc.
struct LazyWaker<F> {
future: UnsafeCell<Option<F>>,
wakers: Mutex<(WakerState, Vec<task::Waker>)>,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum WakerState {
Unlocked,
/// A task is currently polling the future or will soon start polling it
LockedWithoutWake,
/// The future returned Pending and has not seen a wakeup
Pending,
/// A task is currently polling the future but a wake has already been sent
LockedWoken,
}
// Safety: acts like Mutex<F>
unsafe impl<F: Send> Send for LazyWaker<F> {}
unsafe impl<F: Send> Sync for LazyWaker<F> {}
/// A lock guard given to exactly one poller of a LazyWaker at a time.
struct LazyHead<'a, F> {
// Note: this structure is passed to mem::forget during normal use; do not add Drop fields.
waker: &'a Arc<LazyWaker<F>>,
}
impl<F> LazyInner<F> {
fn initialize(&self) -> Option<Arc<LazyWaker<F>>> {
// Increment the queue's reference count. This ensures that queue won't be freed until we exit.
let prev_state = self.state.fetch_add(1, Ordering::Acquire);
// Note: unlike Arc, refcount overflow is impossible. The only way to increment the
// refcount is by calling poll on the Future returned by get_or_try_init, which is !Unpin.
// The poll call requires a Pinned pointer to this Future, and the contract of Pin requires
// Drop to be called on any !Unpin value that was pinned before the memory is reused.
// Because the Drop impl of QueueRef decrements the refcount, an overflow would require
// more than (usize::MAX / 4) QueueRef objects in memory, which is impossible as these
// objects take up more than 4 bytes.
let mut queue = self.queue.load(Ordering::Acquire);
if queue.is_null() && prev_state & READY_BIT == 0 {
let waker: LazyWaker<F> = LazyWaker {
future: UnsafeCell::new(None),
wakers: Mutex::new((WakerState::Unlocked, Vec::new())),
};
// Race with other callers of initialize to create the queue
let new_queue = Arc::into_raw(Arc::new(waker)) as *mut _;
match self.queue.compare_exchange(
ptr::null_mut(),
new_queue,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_null) => {
// Normal case: it was actually set. The Release part of AcqRel orders this
// with all Acquires on the queue.
queue = new_queue;
}
Err(actual) => {
// we lost the race, but we have the (non-null) value now.
queue = actual;
// Safety: we just allocated it, and nobody else has seen it
unsafe {
Arc::from_raw(new_queue as *const _);
}
}
}
}
let rv = if queue.is_null() {
None
} else {
// Safety: the queue won't be freed due to the refcount raise at the start of the
// function, and if queue is nonnull it has at least one strong ref.
unsafe {
Arc::increment_strong_count(queue as *const _);
Some(Arc::from_raw(queue as *const _))
}
};
let prev_state = self.state.fetch_sub(1, Ordering::AcqRel);
if prev_state & READY_BIT == 0 {
// Normal case: not ready, this is the queue for this cell.
debug_assert!(rv.is_some());
rv
} else {
// We prevented the our reference to the queue from being freed when it's elgible for
// freeing. If we were the last one holding that reference, free it.
if prev_state == READY_BIT + 1 {
let queue = self.queue.swap(ptr::null_mut(), Ordering::Acquire);
if !queue.is_null() {
// Safety: no other callers of initialize were present and any future ones will
// also observe READY_BIT. This is the only function that uses this reference,
// so if we got a nonnull queue we are the only user of this reference.
unsafe {
Arc::decrement_strong_count(queue as *const _);
}
}
}
// We checked READY_BIT and it's ready
None
}
}
fn set_ready(&self) {
// This Release pairs with the Acquire any time we check READY_BIT, and ensures that the
// writes to the cell's value are visible to the cell's readers.
let prev_state = self.state.fetch_or(READY_BIT, Ordering::Release);
debug_assert_eq!(prev_state & READY_BIT, 0, "Invalid state: somoene else set READY_BIT");
// If nobody was in initialize() (normal case), then we kill our reference to the LazyWaker
// Arc here. Otherwise, that function will handle the cleanup.
if prev_state == NEW {
let queue = self.queue.swap(ptr::null_mut(), Ordering::Acquire);
if !queue.is_null() {
unsafe {
Arc::decrement_strong_count(queue as *const _);
}
}
}
}
}
impl<F> Drop for LazyInner<F> {
fn drop(&mut self) {
let queue = *self.queue.get_mut();
if !queue.is_null() {
// Safety: the only user of this reference is initialize, and we know it is not running
// because it uses a borrow of this object.
unsafe {
Arc::decrement_strong_count(queue);
}
}
}
}
impl<F> LazyWaker<F> {
/// Return a LazyHead if the caller was the first task to arrive and the cell is still empty.
/// Otherwise, return None if the cell is already populated and Pending otherwise.
fn poll_head<'a>(
self: &'a Arc<Self>,
cx: &mut task::Context<'_>,
inner: &LazyInner<F>,
) -> task::Poll<Option<LazyHead<'a, F>>> {
let mut lock = self.wakers.lock().unwrap();
// Don't give out the head if the cell is ready
let state = inner.state.load(Ordering::Acquire);
if state & READY_BIT != 0 {
return task::Poll::Ready(None);
}
let wakers = &mut lock.1;
let my_waker = cx.waker();
for waker in wakers.iter() {
if waker.will_wake(my_waker) {
return task::Poll::Pending;
}
}
wakers.push(my_waker.clone());
match lock.0 {
WakerState::Unlocked => {
// Safety: this state change means we are the only LazyHead present
lock.0 = WakerState::LockedWithoutWake;
task::Poll::Ready(Some(LazyHead { waker: self }))
}
_ => {
// In all other cases, someone will wake us: the owner of LazyHead if locked or the
// Waker if the task was pending.
task::Poll::Pending
}
}
}
}
impl<F> task::Wake for LazyWaker<F> {
fn wake(self: Arc<Self>) {
self.wake_by_ref()
}
fn wake_by_ref(self: &Arc<Self>) {
let mut lock = self.wakers.lock().unwrap();
match lock.0 {
WakerState::LockedWithoutWake => {
// Postposne propagating the wakes until the poll is complete
lock.0 = WakerState::LockedWoken;
return;
}
WakerState::LockedWoken => return,
WakerState::Pending => {
lock.0 = WakerState::Unlocked;
}
WakerState::Unlocked => {
// Note: the waker list should be empty
}
}
let wakers = mem::replace(&mut lock.1, Vec::new());
// Avoid holding the lock while waking in case there is a recursive wake
drop(lock);
for waker in wakers {
waker.wake();
}
}
}
impl<'a, F> LazyHead<'a, F> {
fn poll_inner(self, init: impl FnOnce() -> F) -> task::Poll<(Self, F::Output)>
where
F: Future + Send + 'static,
{
let ptr = self.waker.future.get();
// Safety: only one task can acquire a LazyHead object, so we are safe to modify the shared
// state. The value of ptr is inside an Arc that is never exposed outside this module (and
// we never call get_mut on the Arc), so the contents follow the rules of Pin even if the
// Arc was not created using Arc::pin.
let fut = unsafe { Pin::new_unchecked((*ptr).get_or_insert_with(init)) };
let shared_waker = task::Waker::from(Arc::clone(self.waker));
let mut ctx = task::Context::from_waker(&shared_waker);
match fut.poll(&mut ctx) {
task::Poll::Pending => {
// The inner future is pending, so LazyHead should not send out wakes until or
// unless the shared waker has been used.
let mut lock = self.waker.wakers.lock().unwrap();
match lock.0 {
WakerState::LockedWithoutWake => {
lock.0 = WakerState::Pending;
drop(lock);
}
WakerState::LockedWoken => {
// There was a wake while we held the lock. Send wakes to all tasks.
lock.0 = WakerState::Unlocked;
let wakers = mem::replace(&mut lock.1, Vec::new());
drop(lock);
for waker in wakers {
waker.wake();
}
}
WakerState::Pending | WakerState::Unlocked => {
unreachable!();
}
}
// we just did the drop implementation, don't do it again.
mem::forget(self);
task::Poll::Pending
}
task::Poll::Ready(value) => {
// Drop the pinned Future now that it has completed. Safety: we still hold the lock.
unsafe {
*ptr = None;
}
task::Poll::Ready((self, value))
}
}
}
}
impl<'a, F> Drop for LazyHead<'a, F> {
fn drop(&mut self) {
// Note: this is only called if the poll_inner was Ready or in case of panic. In either
// case, we should transition to an Unlocked state and wake all waiting tasks. If the
// future was ready, they will all be able to pick up the value; if it paniced, the next
// task in line will retry the poll (which will just panic again if the future was
// generated by an async block).
let mut lock = self.waker.wakers.lock().unwrap();
match lock.0 {
WakerState::LockedWoken | WakerState::LockedWithoutWake => {
lock.0 = WakerState::Unlocked;
}
WakerState::Unlocked | WakerState::Pending => {
unreachable!();
}
}
let wakers = mem::replace(&mut lock.1, Vec::new());
drop(lock);
for waker in wakers {
waker.wake();
}
}
}
impl<T, F, I> OnceFuture<T, F, I> {
/// Creates a new OnceFuture with an initializing value
pub const fn with_init(init: I) -> Self {
OnceFuture {
value: UnsafeCell::new(LazyState::New(init)),
inner: LazyInner {
state: AtomicUsize::new(NEW),
queue: AtomicPtr::new(ptr::null_mut()),
},
}
}
/// Creates a new OnceFuture without an initializing value
///
/// The resulting Future must be produced by the closure passed to [Self::get_or_init_with].
/// This function is identical to [Self::new] but is more likely to need type hints.
pub const fn with_no_init() -> Self {
OnceFuture {
value: UnsafeCell::new(LazyState::Running),
inner: LazyInner {
state: AtomicUsize::new(NEW),
queue: AtomicPtr::new(ptr::null_mut()),
},
}
}
/// Creates a new OnceFuture that is immediately ready
pub const fn with_value(value: T) -> Self {
OnceFuture {
value: UnsafeCell::new(LazyState::Ready(value)),
inner: LazyInner {
state: AtomicUsize::new(READY_BIT),
queue: AtomicPtr::new(ptr::null_mut()),
},
}
}
/// Gets the value without blocking or starting the initialization.
pub fn get(&self) -> Option<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
None
} else {
// Safety: READY_BIT is set
unsafe {
match &*self.value.get() {
LazyState::Ready(v) => Some(v),
_ => unreachable!(),
}
}
}
}
/// Get mutable access to the initializer or final value.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn get_mut(&mut self) -> (Option<&mut I>, Option<&mut T>) {
match self.value.get_mut() {
LazyState::New(i) => (Some(i), None),
LazyState::Running => (None, None),
LazyState::Ready(v) => (None, Some(v)),
}
}
/// Gets the initializer or final value
pub fn into_inner(self) -> (Option<I>, Option<T>) {
match self.value.into_inner() {
LazyState::New(i) => (Some(i), None),
LazyState::Running => (None, None),
LazyState::Ready(v) => (None, Some(v)),
}
}
}
impl<T, F> OnceFuture<T, F> {
/// Creates a new OnceFuture without an initializing value
///
/// The resulting Future must be produced by the closure passed to get_or_init_with
pub const fn new() -> Self {
Self::with_no_init()
}
}
impl<F> OnceFuture<F::Output, F>
where
F: Future + Send + 'static,
{
/// Creates a new OnceFuture directly from a Future.
///
/// The `gen_future` or `into_future` closures will never be called.
pub fn from_future(future: F) -> Self {
let rv = Self::new();
let waker = rv.inner.initialize().unwrap();
// Safe because we currently have exclusive ownership
unsafe {
*waker.future.get() = Some(future);
}
rv
}
}
impl<T, F, I> OnceFuture<T, F, I>
where
F: Future<Output = T> + Send + 'static,
{
/// Create and run the future until it produces a result, then return a reference to that
/// result.
///
/// This is a convenience wrapper around [OnceFuture::get_or_populate_with] for use when the
/// initializer value is not used or not present.
pub async fn get_or_init_with(&self, gen_future: impl FnOnce() -> F) -> &T {
self.get_or_populate_with(move |_| gen_future()).await
}
/// Create and run the future until it produces a result, then return a reference to that
/// result.
///
/// Only one `into_future` closure will be called per `OnceFuture` instance, and only if the
/// future was not already set by `from_future`.
pub async fn get_or_populate_with(&self, into_future: impl FnOnce(Option<I>) -> F) -> &T {
struct Get<'a, T, F, I, P>(&'a OnceFuture<T, F, I>, Option<P>);
impl<'a, T, F, I, P> Unpin for Get<'a, T, F, I, P> {}
impl<'a, T, F, I, P> Future for Get<'a, T, F, I, P>
where
F: Future<Output = T> + Send + 'static,
P: FnOnce(Option<I>) -> F,
{
type Output = &'a T;
fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
self.0.poll_populate(cx, |i| (self.1.take().unwrap())(i))
}
}
Get(self, Some(into_future)).await
}
/// Create and run the future until it produces a result, then return a reference to that
/// result.
///
/// Only one `into_future` closure will be called per `OnceFuture` instance, and only if the
/// future was not already set by `from_future`.
pub fn poll_populate(
&self,
cx: &mut task::Context<'_>,
into_future: impl FnOnce(Option<I>) -> F,
) -> task::Poll<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
match self.init_slow(cx, into_future) {
task::Poll::Pending => return task::Poll::Pending,
task::Poll::Ready(()) => {}
}
}
// Safety: just initialized
unsafe {
match &*self.value.get() {
LazyState::Ready(v) => task::Poll::Ready(v),
_ => unreachable!(),
}
}
}
/// Do the actual init work. If this returns Ready, the initialization succeeded.
#[cold]
fn init_slow(
&self,
cx: &mut task::Context<'_>,
into_future: impl FnOnce(Option<I>) -> F,
) -> task::Poll<()> {
let waker = self.inner.initialize();
let waker = match waker {
Some(waker) => waker,
None => return task::Poll::Ready(()),
};
match waker.poll_head(cx, &self.inner) {
task::Poll::Ready(Some(init_lock)) => {
// Safety: init_lock ensures we have exclusive access
let value = mem::replace(unsafe { &mut *self.value.get() }, LazyState::Running);
let init = match value {
LazyState::New(init) => Some(init),
LazyState::Running => None,
LazyState::Ready(_) => unreachable!(),
};
match init_lock.poll_inner(move || into_future(init)) {
task::Poll::Ready((lock, value)) => {
// Safety: we still hold the lock
unsafe {
*self.value.get() = LazyState::Ready(value);
}
self.inner.set_ready();
drop(lock);
}
task::Poll::Pending => return task::Poll::Pending,
}
}
task::Poll::Ready(None) => return task::Poll::Ready(()),
task::Poll::Pending => return task::Poll::Pending,
}
task::Poll::Ready(())
}
}
/// A value which is initialized on the first access.
///
/// See [ConstLazy] if you need to initialize in a const context.
///
/// ```
/// # async fn run() {
/// use std::sync::Arc;
/// use async_once_cell::unpin::Lazy;
///
/// let shared = Arc::new(Lazy::new(async {
/// 4
/// }));
///
/// let value : &i32 = shared.get().await;
/// assert_eq!(value, &4);
/// # }
/// ```
///
/// You can also call `await` on a reference:
///
/// ```
/// # async fn run() {
/// use async_once_cell::unpin::Lazy;
/// struct Foo {
/// value: Lazy<i32>,
/// }
///
/// let foo = Foo {
/// value : Lazy::new(Box::pin(async { 4 })),
/// };
///
/// assert_eq!((&foo.value).await, &4);
/// # }
/// ```
#[derive(Debug)]
pub struct Lazy<T, F = Pin<Box<dyn Future<Output = T> + Send>>> {
once: OnceFuture<T, F>,
}
impl<T, F> Lazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
/// Creates a new lazy value with the given initializing future.
pub fn new(future: F) -> Self {
Lazy { once: OnceFuture::from_future(future) }
}
/// Forces the evaluation of this lazy value and returns a reference to the result.
///
/// This is equivalent to the `Future` impl on `&Lazy`, but is explicit and may be simpler to
/// call. This will panic if the initializing closure panics or has panicked.
pub async fn get(&self) -> &T {
self.await
}
}
impl<T, F> Lazy<T, F> {
/// Creates an already-initialized lazy value.
pub const fn with_value(value: T) -> Self {
Self { once: OnceFuture::with_value(value) }
}
/// Gets the value without blocking or starting the initialization.
pub fn try_get(&self) -> Option<&T> {
self.once.get()
}
/// Gets the value without blocking or starting the initialization.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn try_get_mut(&mut self) -> Option<&mut T> {
self.once.get_mut().1
}
/// Gets the value if it was set.
pub fn into_value(self) -> Option<T> {
// It would be confusing to only sometimes return the future, and it's rarely useful.
self.once.into_inner().1
}
}
impl<'a, T, F> Future for &'a Lazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
type Output = &'a T;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
// The init closure is unreachable because we always start with the Future set.
self.once.poll_populate(cx, |_| unreachable!())
}
}
/// A value which is initialized on the first access.
///
/// Note: This structure may be larger in size than [Lazy], but it does not allocate on the heap
/// until it is first polled, so is suitable for initializing statics.
#[derive(Debug)]
pub struct ConstLazy<T, F> {
once: OnceFuture<T, F, F>,
}
impl<T, F> ConstLazy<T, F> {
/// Creates a new lazy value with the given initializing future.
pub const fn new(future: F) -> Self {
ConstLazy { once: OnceFuture::with_init(future) }
}
/// Creates an already-initialized lazy value.
pub const fn with_value(value: T) -> Self {
Self { once: OnceFuture::with_value(value) }
}
/// Gets the value without blocking or starting the initialization.
pub fn try_get(&self) -> Option<&T> {
self.once.get()
}
/// Gets the value without blocking or starting the initialization.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn try_get_mut(&mut self) -> Option<&mut T> {
self.once.get_mut().1
}
/// Gets the value if it was set.
pub fn into_value(self) -> Option<T> {
// It would be confusing to only sometimes return the future, and it's rarely useful.
self.once.into_inner().1
}
}
impl<T, F> ConstLazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
/// Forces the evaluation of this lazy value and returns a reference to the result.
///
/// This is equivalent to the `Future` impl on `&ConstLazy`, but is explicit and may be simpler
/// to call. This will panic if the initializing closure panics or has panicked.
pub async fn get(&self) -> &T {
self.await
}
}
impl<'a, T, F> Future for &'a ConstLazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
type Output = &'a T;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
// The init closure always has an initialization value
self.once.poll_populate(cx, |i| i.unwrap_or_else(|| unreachable!()))
}
}