1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
//! A collection of lazy initialized values that are created by `Future`s.
//!
//! [OnceCell]'s API should be familiar to anyone who has used the
//! [`once_cell`](https://crates.io/crates/once_cell) crate or the proposed `std::lazy` module. It
//! provides an async version of a cell that can only be initialized once, permitting tasks to wait
//! on the initialization if it is already running instead of racing multiple initialization tasks.
//!
//! Unlike threads, tasks can be cancelled at any point where they block. [OnceCell] deals with
//! this by allowing another initializer to run if the task currently initializing the cell is
//! dropped. This also allows for fallible initialization using [OnceCell::get_or_try_init], and
//! for the initializing `Future` to contain borrows or use references to thread-local data.
//!
//! [OnceFuture] and its wrappers [Lazy] and [ConstLazy] take the opposite approach: they wrap a
//! single `Future` which is cooperatively run to completion by any polling task. This requires
//! that the initialization function be independent of the calling context, but will never restart
//! an initializing function just because the surrounding task was cancelled.
//!
//! # Overhead
//!
//! Both cells use two `usize`s to store state and do not retain any allocations after
//! initialization is complete. [OnceCell] only allocates if there is contention, whereas
//! [OnceFuture] always allocates because it must have a pinned address for running the future.
use std::{
cell::UnsafeCell,
convert::Infallible,
future::Future,
mem,
panic::{RefUnwindSafe, UnwindSafe},
pin::Pin,
ptr,
sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
sync::{Arc, Mutex},
task,
};
/// A cell which can be written to only once.
///
/// This allows initialization using an async closure that borrows from its environment.
///
/// Unlike [OnceFuture], the initialing closures do not require `Send + 'static` bounds.
///
/// ```
/// # async fn run() {
/// use std::rc::Rc;
/// use std::sync::Arc;
/// use async_once_cell::OnceCell;
///
/// let non_send_value = Rc::new(4);
/// let shared = Arc::new(OnceCell::new());
///
/// let value : &i32 = shared.get_or_init(async {
/// *non_send_value
/// }).await;
/// assert_eq!(value, &4);
///
/// // A second init is not called
/// let second = shared.get_or_init(async {
/// unreachable!()
/// }).await;
/// assert_eq!(second, &4);
///
/// # }
/// ```
#[derive(Debug)]
pub struct OnceCell<T> {
value: UnsafeCell<Option<T>>,
inner: Inner,
}
// Safety: our UnsafeCell should be treated like an RwLock<T>
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}
impl<T> Unpin for OnceCell<T> {}
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}
/// Monomorphic portion of the state
#[derive(Debug)]
struct Inner {
state: AtomicUsize,
queue: AtomicPtr<Queue>,
}
/// Transient state during initialization
///
/// Unlike the sync OnceCell, this cannot be a linked list through stack frames, because Futures
/// can be freed at any point by any thread. Instead, this structure is allocated on the heap
/// during the first initialization call and freed after the value is set (or when the OnceCell is
/// dropped, if the value never gets set).
struct Queue {
wakers: Mutex<Option<Vec<task::Waker>>>,
}
/// This is somewhat like Arc<Queue>, but holds the refcount in Inner instead of Queue so it can be
/// freed once the cell's initialization is complete.
struct QueueRef<'a> {
inner: &'a Inner,
queue: *const Queue,
}
// Safety: the queue is a reference (only the lack of a valid lifetime requires it to be a pointer)
unsafe impl<'a> Sync for QueueRef<'a> {}
unsafe impl<'a> Send for QueueRef<'a> {}
#[derive(Debug)]
struct QuickInitGuard<'a>(&'a Inner);
/// A Future that waits for acquisition of a QueueHead
struct QueueWaiter<'a> {
guard: Option<QueueRef<'a>>,
}
/// A guard for the actual initialization of the OnceCell
struct QueueHead<'a> {
guard: QueueRef<'a>,
}
const NEW: usize = 0x0;
const QINIT_BIT: usize = 1 + (usize::MAX >> 2);
const READY_BIT: usize = 1 + (usize::MAX >> 1);
impl Inner {
const fn new() -> Self {
Inner { state: AtomicUsize::new(NEW), queue: AtomicPtr::new(ptr::null_mut()) }
}
const fn new_ready() -> Self {
Inner { state: AtomicUsize::new(READY_BIT), queue: AtomicPtr::new(ptr::null_mut()) }
}
/// Initialize the queue (if needed) and return a waiter that can be polled to get a QueueHead
/// that gives permission to initialize the OnceCell.
///
/// The Queue referenced in the returned QueueRef will not be freed until the cell is populated
/// and all references have been dropped. If any references remain, further calls to
/// initialize will return the existing queue.
#[cold]
fn initialize(&self, try_quick: bool) -> Result<QueueWaiter, QuickInitGuard> {
if try_quick {
if self
.state
.compare_exchange(NEW, QINIT_BIT, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
// On success, we know that there were no other QueueRef objects active, and we
// just set QINIT_BIT which makes us the only party allowed to create a QueueHead.
// This remains true even if the queue is created later.
return Err(QuickInitGuard(self));
}
}
// Increment the queue's reference count. This ensures that queue won't be freed until we exit.
let prev_state = self.state.fetch_add(1, Ordering::Acquire);
// Note: unlike Arc, refcount overflow is impossible. The only way to increment the
// refcount is by calling poll on the Future returned by get_or_try_init, which is !Unpin.
// The poll call requires a Pinned pointer to this Future, and the contract of Pin requires
// Drop to be called on any !Unpin value that was pinned before the memory is reused.
// Because the Drop impl of QueueRef decrements the refcount, an overflow would require
// more than (usize::MAX / 4) QueueRef objects in memory, which is impossible as these
// objects take up more than 4 bytes.
let mut guard = QueueRef { inner: self, queue: self.queue.load(Ordering::Acquire) };
if guard.queue.is_null() && prev_state & READY_BIT == 0 {
let wakers = Mutex::new(None);
// Race with other callers of initialize to create the queue
let new_queue = Box::into_raw(Box::new(Queue { wakers }));
match self.queue.compare_exchange(
ptr::null_mut(),
new_queue,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_null) => {
// Normal case: it was actually set. The Release part of AcqRel orders this
// with all Acquires on the queue.
guard.queue = new_queue;
}
Err(actual) => {
// we lost the race, but we have the (non-null) value now.
guard.queue = actual;
// Safety: we just allocated it, and nobody else has seen it
unsafe {
Box::from_raw(new_queue);
}
}
}
}
Ok(QueueWaiter { guard: Some(guard) })
}
fn set_ready(&self) {
// This Release pairs with the Acquire any time we check READY_BIT, and ensures that the
// writes to the cell's value are visible to the cell's readers.
let prev_state = self.state.fetch_or(READY_BIT, Ordering::Release);
debug_assert_eq!(prev_state & READY_BIT, 0, "Invalid state: somoene else set READY_BIT");
}
}
impl<'a> Drop for QueueRef<'a> {
fn drop(&mut self) {
// Release the reference to queue
let prev_state = self.inner.state.fetch_sub(1, Ordering::Release);
// Note: as of now, self.queue may be invalid
let curr_state = prev_state - 1;
if curr_state == READY_BIT || curr_state == READY_BIT | QINIT_BIT {
// We just removed the only waiter on an initialized cell. This means the
// queue is no longer needed. Acquire the queue again so we can free it.
let queue = self.inner.queue.swap(ptr::null_mut(), Ordering::Acquire);
if !queue.is_null() {
// Safety: the last guard is being freed, and queue is only used by guard-holders.
// Due to the swap, we are the only one who is freeing this particular queue.
unsafe {
Box::from_raw(queue);
}
}
}
}
}
impl<'a> Drop for QuickInitGuard<'a> {
fn drop(&mut self) {
let prev_state = self.0.state.load(Ordering::Relaxed);
if prev_state == QINIT_BIT | READY_BIT || prev_state == QINIT_BIT {
let target = prev_state & !QINIT_BIT;
// Try to finish the fast path of initialization if possible.
if self
.0
.state
.compare_exchange(prev_state, target, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()
{
// If init succeeded, the Release in set_ready already ordered the value. If init
// failed, we made no writes that need to be ordered and there are no waiters to
// wake, so we can leave the state at NEW.
if target == READY_BIT {
// It's possible (though unlikely) that someone created the queue but abandoned
// their QueueRef before we finished our poll, resulting in us not observing
// them. No wakes are needed in this case because there are no waiting tasks,
// but we should still clean up the allocation.
let queue = self.0.queue.swap(ptr::null_mut(), Ordering::Relaxed);
if !queue.is_null() {
// Synchronize with both the fetch_sub that lowered the refcount and the
// queue initialization.
std::sync::atomic::fence(Ordering::Acquire);
// Safety: we observed no active QueueRefs, and queue is only used by
// guard-holders. Due to the swap, we are the only one who is freeing this
// particular queue.
unsafe {
Box::from_raw(queue);
}
}
}
return;
}
}
// Slow path: get a guard, create the QueueHead we should have been holding, then drop it
// so that the tasks are woken as intended. This is needed regardless of if we succeeded
// or not - either waiters need to run init themselves, or they need to read the value we
// set.
//
// The guard is guaranteed to have been created with no QueueHead available because
// QINIT_BIT is still set.
let waiter = self.0.initialize(false).expect("Got a QuickInitGuard in slow init");
let guard = waiter.guard.expect("No guard available even without polling");
if guard.queue.is_null() {
// The queue was already freed by someone else before we got our QueueRef (this must
// have happend between the load of prev_state and initialize, because otherwise we
// would have taken the fast path). This implies that all other tasks have noticed
// READY_BIT and do not need waking, so there is nothing left for us to do except
// release our reference.
drop(guard);
} else {
// Safety: the guard holds a place on the waiter list and we just checked that the
// queue is non-null. It will remain valid until guard is dropped.
let queue = unsafe { &*guard.queue };
let mut lock = queue.wakers.lock().unwrap();
// Ensure that nobody else can grab the QueueHead between when we release QINIT_BIT and
// when our QueueHead is dropped.
lock.get_or_insert_with(Vec::new);
// Allow someone else to take the head position once we drop it. Ordering is handled
// by the Mutex.
self.0.state.fetch_and(!QINIT_BIT, Ordering::Relaxed);
drop(lock);
// Safety: we just took the head position, and we were the QuickInitGuard
drop(QueueHead { guard })
}
}
}
impl Drop for Inner {
fn drop(&mut self) {
let queue = *self.queue.get_mut();
if !queue.is_null() {
// Safety: nobody else could have a reference
unsafe {
Box::from_raw(queue);
}
}
}
}
impl<'a> Future for QueueWaiter<'a> {
type Output = Option<QueueHead<'a>>;
fn poll(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
) -> task::Poll<Option<QueueHead<'a>>> {
let guard = self.guard.as_ref().expect("Polled future after finished");
// Fast path for waiters that get notified after the value is set
let state = guard.inner.state.load(Ordering::Acquire);
if state & READY_BIT != 0 {
return task::Poll::Ready(None);
}
// Safety: the guard holds a place on the waiter list and we just checked that the state is
// not ready, so the queue is non-null and will remain valid until guard is dropped.
let queue = unsafe { &*guard.queue };
let mut lock = queue.wakers.lock().unwrap();
// Another task might have called set_ready() and dropped its QueueHead between our
// optimistic lock-free check and our lock acquisition. Don't return a QueueHead unless we
// know for sure that we are allowed to initialize.
let state = guard.inner.state.load(Ordering::Acquire);
if state & READY_BIT != 0 {
return task::Poll::Ready(None);
}
match lock.as_mut() {
None if state & QINIT_BIT == 0 => {
// take the head position and start a waker queue
*lock = Some(Vec::new());
drop(lock);
// Safety: we know that nobody else has a QuickInitGuard because we are holding a
// QueueRef that prevents state from being 0 (which is required to create a
// new QuickInitGuard), and we just checked that one wasn't created before we
// created our QueueRef.
task::Poll::Ready(Some(QueueHead { guard: self.guard.take().unwrap() }))
}
None => {
// Someone else has a QuickInitGuard; they will wake us when they finish.
let waker = cx.waker().clone();
*lock = Some(vec![waker]);
task::Poll::Pending
}
Some(wakers) => {
// Wait for the QueueHead to be dropped
let my_waker = cx.waker();
for waker in wakers.iter() {
if waker.will_wake(my_waker) {
return task::Poll::Pending;
}
}
wakers.push(my_waker.clone());
task::Poll::Pending
}
}
}
}
impl<'a> Drop for QueueHead<'a> {
fn drop(&mut self) {
// Safety: if queue is not null, then it is valid as long as the guard is alive
if let Some(queue) = unsafe { self.guard.queue.as_ref() } {
// Take the waker queue so the next QueueWaiter can make a new one
let wakers = queue
.wakers
.lock()
.expect("Lock poisoned")
.take()
.expect("QueueHead dropped without a waker list");
for waker in wakers {
waker.wake();
}
}
}
}
impl<T> OnceCell<T> {
/// Creates a new empty cell.
pub const fn new() -> Self {
Self { value: UnsafeCell::new(None), inner: Inner::new() }
}
/// Creates a new cell with the given contents.
pub const fn new_with(value: Option<T>) -> Self {
let inner = match value {
Some(_) => Inner::new_ready(),
None => Inner::new(),
};
Self { value: UnsafeCell::new(value), inner }
}
/// Gets the contents of the cell, initializing it with `init` if the cell was empty.
///
/// Many tasks may call `get_or_init` concurrently with different initializing futures, but
/// it is guaranteed that only one future will be executed as long as the resuting future is
/// polled to completion.
///
/// If `init` panics, the panic is propagated to the caller, and the cell remains uninitialized.
///
/// If the Future returned by this function is dropped prior to completion, the cell remains
/// uninitialized (and another init futures may be selected for polling).
///
/// It is an error to reentrantly initialize the cell from `init`. The current implementation
/// deadlocks, but will recover if the offending task is dropped.
pub async fn get_or_init(&self, init: impl Future<Output = T>) -> &T {
match self.get_or_try_init(async move { Ok::<T, Infallible>(init.await) }).await {
Ok(t) => t,
Err(e) => match e {},
}
}
/// Gets the contents of the cell, initializing it with `init` if the cell was empty. If the
/// cell was empty and `init` failed, an error is returned.
///
/// If `init` panics, the panic is propagated to the caller, and the cell remains
/// uninitialized.
///
/// If the Future returned by this function is dropped prior to completion, the cell remains
/// uninitialized.
///
/// It is an error to reentrantly initialize the cell from `init`. The current implementation
/// deadlocks, but will recover if the offending task is dropped.
pub async fn get_or_try_init<E>(
&self,
init: impl Future<Output = Result<T, E>>,
) -> Result<&T, E> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
self.init_slow(state == NEW, init).await?;
}
// Safety: initialized on all paths
Ok(unsafe { (&*self.value.get()).as_ref().unwrap() })
}
#[cold]
async fn init_slow<E>(
&self,
try_quick: bool,
init: impl Future<Output = Result<T, E>>,
) -> Result<(), E> {
match self.inner.initialize(try_quick) {
Err(guard) => {
// Try to proceed assuming no contention.
let value = init.await?;
// Safety: the guard acts like QueueHead even if there is contention.
unsafe {
*self.value.get() = Some(value);
}
self.inner.set_ready();
drop(guard);
}
Ok(guard) => {
if let Some(init_lock) = guard.await {
// We hold the QueueHead, so we know that nobody else has successfully run an init
// poll and that nobody else can start until it is dropped. On error, panic, or
// drop of this Future, the head will be passed to another waiter.
let value = init.await?;
// Safety: We still hold the head, so nobody else can write to value
unsafe {
*self.value.get() = Some(value);
}
// mark the cell ready before giving up the head
init_lock.guard.inner.set_ready();
// drop of QueueHead notifies other Futures
// drop of QueueRef (might) free the Queue
} else {
// someone initialized it while waiting on the queue
}
}
}
Ok(())
}
/// Gets the reference to the underlying value.
///
/// Returns `None` if the cell is empty or being initialized. This method never blocks.
pub fn get(&self) -> Option<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
None
} else {
unsafe { (&*self.value.get()).as_ref() }
}
}
/// Gets a mutable reference to the underlying value.
pub fn get_mut(&mut self) -> Option<&mut T> {
self.value.get_mut().as_mut()
}
/// Takes the value out of this `OnceCell`, moving it back to an uninitialized state.
pub fn take(&mut self) -> Option<T> {
self.value.get_mut().take()
}
/// Consumes the OnceCell, returning the wrapped value. Returns None if the cell was empty.
pub fn into_inner(self) -> Option<T> {
self.value.into_inner()
}
}
/// A Future which is executed exactly once, producing an output accessible without locking.
///
/// This is primarily used as a building block for [Lazy] and [ConstLazy], but can also be used on
/// its own similar to [OnceCell].
///
/// ```
/// # async fn run() {
/// use std::sync::Arc;
/// use async_once_cell::OnceFuture;
///
/// let shared = Arc::new(OnceFuture::new());
/// let value : &i32 = shared.get_or_init_with(|| async {
/// 4
/// }).await;
/// assert_eq!(value, &4);
/// # }
/// ```
#[derive(Debug)]
pub struct OnceFuture<T, F = Pin<Box<dyn Future<Output = T> + Send>>, I = Infallible> {
value: UnsafeCell<LazyState<T, I>>,
inner: LazyInner<F>,
}
// Safety: acts like RwLock<T> + Mutex<(I,F)>.
unsafe impl<T: Sync + Send, F: Send, I: Send> Sync for OnceFuture<T, F, I> {}
unsafe impl<T: Send, F: Send, I: Send> Send for OnceFuture<T, F, I> {}
// We pin F inside the allocated LazyWaker; this object can be moved freely
impl<T, F, I> Unpin for OnceFuture<T, F, I> {}
// It is possible to get T and I with &mut self, and &T with &self
impl<T: RefUnwindSafe + UnwindSafe, F, I: RefUnwindSafe> RefUnwindSafe for OnceFuture<T, F, I> {}
impl<T: UnwindSafe, F, I: UnwindSafe> UnwindSafe for OnceFuture<T, F, I> {}
enum LazyState<T, I> {
New(I),
Running,
Ready(T),
}
#[derive(Debug)]
struct LazyInner<F> {
state: AtomicUsize,
queue: AtomicPtr<LazyWaker<F>>,
}
/// Contents of the Arc held by LazyInner and by any Waker given to the future. This value is
/// pinned in the Arc.
struct LazyWaker<F> {
future: UnsafeCell<Option<F>>,
wakers: Mutex<(WakerState, Vec<task::Waker>)>,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum WakerState {
Unlocked,
/// A task is currently polling the future or will soon start polling it
LockedWithoutWake,
/// The future returned Pending and has not seen a wakeup
Pending,
/// A task is currently polling the future but a wake has already been sent
LockedWoken,
}
// Safety: acts like Mutex<F>
unsafe impl<F: Send> Send for LazyWaker<F> {}
unsafe impl<F: Send> Sync for LazyWaker<F> {}
/// A lock guard given to exactly one poller of a LazyWaker at a time.
struct LazyHead<'a, F> {
// Note: this structure is passed to mem::forget during normal use; do not add Drop fields.
waker: &'a Arc<LazyWaker<F>>,
}
impl<F> LazyInner<F> {
fn initialize(&self) -> Option<Arc<LazyWaker<F>>> {
// Increment the queue's reference count. This ensures that queue won't be freed until we exit.
let prev_state = self.state.fetch_add(1, Ordering::Acquire);
// Note: unlike Arc, refcount overflow is impossible. The only way to increment the
// refcount is by calling poll on the Future returned by get_or_try_init, which is !Unpin.
// The poll call requires a Pinned pointer to this Future, and the contract of Pin requires
// Drop to be called on any !Unpin value that was pinned before the memory is reused.
// Because the Drop impl of QueueRef decrements the refcount, an overflow would require
// more than (usize::MAX / 4) QueueRef objects in memory, which is impossible as these
// objects take up more than 4 bytes.
let mut queue = self.queue.load(Ordering::Acquire);
if queue.is_null() && prev_state & READY_BIT == 0 {
let waker: LazyWaker<F> = LazyWaker {
future: UnsafeCell::new(None),
wakers: Mutex::new((WakerState::Unlocked, Vec::new())),
};
// Race with other callers of initialize to create the queue
let new_queue = Arc::into_raw(Arc::new(waker)) as *mut _;
match self.queue.compare_exchange(
ptr::null_mut(),
new_queue,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_null) => {
// Normal case: it was actually set. The Release part of AcqRel orders this
// with all Acquires on the queue.
queue = new_queue;
}
Err(actual) => {
// we lost the race, but we have the (non-null) value now.
queue = actual;
// Safety: we just allocated it, and nobody else has seen it
unsafe {
Arc::from_raw(new_queue as *const _);
}
}
}
}
let rv = if queue.is_null() {
None
} else {
// Safety: the queue won't be freed due to the refcount raise at the start of the
// function, and if queue is nonnull it has at least one strong ref.
unsafe {
Arc::increment_strong_count(queue as *const _);
Some(Arc::from_raw(queue as *const _))
}
};
let prev_state = self.state.fetch_sub(1, Ordering::AcqRel);
if prev_state & READY_BIT == 0 {
// Normal case: not ready, this is the queue for this cell.
debug_assert!(rv.is_some());
rv
} else {
// We prevented the our reference to the queue from being freed when it's elgible for
// freeing. If we were the last one holding that reference, free it.
if prev_state == READY_BIT + 1 {
let queue = self.queue.swap(ptr::null_mut(), Ordering::Acquire);
if !queue.is_null() {
// Safety: no other callers of initialize were present and any future ones will
// also observe READY_BIT. This is the only function that uses this reference,
// so if we got a nonnull queue we are the only user of this reference.
unsafe {
Arc::decrement_strong_count(queue as *const _);
}
}
}
// We checked READY_BIT and it's ready
None
}
}
fn set_ready(&self) {
// This Release pairs with the Acquire any time we check READY_BIT, and ensures that the
// writes to the cell's value are visible to the cell's readers.
let prev_state = self.state.fetch_or(READY_BIT, Ordering::Release);
debug_assert_eq!(prev_state & READY_BIT, 0, "Invalid state: somoene else set READY_BIT");
// If nobody was in initialize() (normal case), then we kill our reference to the LazyWaker
// Arc here. Otherwise, that function will handle the cleanup.
if prev_state == NEW {
let queue = self.queue.swap(ptr::null_mut(), Ordering::Acquire);
if !queue.is_null() {
unsafe {
Arc::decrement_strong_count(queue as *const _);
}
}
}
}
}
impl<F> Drop for LazyInner<F> {
fn drop(&mut self) {
let queue = *self.queue.get_mut();
if !queue.is_null() {
// Safety: the only user of this reference is initialize, and we know it is not running
// because it uses a borrow of this object.
unsafe {
Arc::decrement_strong_count(queue);
}
}
}
}
impl<F> LazyWaker<F> {
/// Return a LazyHead if the caller was the first task to arrive and the cell is still empty.
/// Otherwise, return None if the cell is already populated and Pending otherwise.
fn poll_head<'a>(
self: &'a Arc<Self>,
cx: &mut task::Context<'_>,
inner: &LazyInner<F>,
) -> task::Poll<Option<LazyHead<'a, F>>> {
let mut lock = self.wakers.lock().unwrap();
// Don't give out the head if the cell is ready
let state = inner.state.load(Ordering::Acquire);
if state & READY_BIT != 0 {
return task::Poll::Ready(None);
}
let wakers = &mut lock.1;
let my_waker = cx.waker();
for waker in wakers.iter() {
if waker.will_wake(my_waker) {
return task::Poll::Pending;
}
}
wakers.push(my_waker.clone());
match lock.0 {
WakerState::Unlocked => {
// Safety: this state change means we are the only LazyHead present
lock.0 = WakerState::LockedWithoutWake;
task::Poll::Ready(Some(LazyHead { waker: self }))
}
_ => {
// In all other cases, someone will wake us: the owner of LazyHead if locked or the
// Waker if the task was pending.
task::Poll::Pending
}
}
}
}
impl<F> task::Wake for LazyWaker<F> {
fn wake(self: Arc<Self>) {
self.wake_by_ref()
}
fn wake_by_ref(self: &Arc<Self>) {
let mut lock = self.wakers.lock().unwrap();
match lock.0 {
WakerState::LockedWithoutWake => {
// Postposne propagating the wakes until the poll is complete
lock.0 = WakerState::LockedWoken;
return;
}
WakerState::LockedWoken => return,
WakerState::Pending => {
lock.0 = WakerState::Unlocked;
}
WakerState::Unlocked => {
// Note: the waker list should be empty
}
}
let wakers = mem::replace(&mut lock.1, Vec::new());
// Avoid holding the lock while waking in case there is a recursive wake
drop(lock);
for waker in wakers {
waker.wake();
}
}
}
impl<'a, F> LazyHead<'a, F> {
fn poll_inner(self, init: impl FnOnce() -> F) -> task::Poll<(Self, F::Output)>
where
F: Future + Send + 'static,
{
let ptr = self.waker.future.get();
// Safety: only one task can acquire a LazyHead object, so we are safe to modify the shared
// state. The value of ptr is inside an Arc that is never exposed outside this module (and
// we never call get_mut on the Arc), so the contents follow the rules of Pin even if the
// Arc was not created using Arc::pin.
let fut = unsafe { Pin::new_unchecked((*ptr).get_or_insert_with(init)) };
let shared_waker = task::Waker::from(Arc::clone(self.waker));
let mut ctx = task::Context::from_waker(&shared_waker);
match fut.poll(&mut ctx) {
task::Poll::Pending => {
// The inner future is pending, so LazyHead should not send out wakes until or
// unless the shared waker has been used.
let mut lock = self.waker.wakers.lock().unwrap();
match lock.0 {
WakerState::LockedWithoutWake => {
lock.0 = WakerState::Pending;
drop(lock);
}
WakerState::LockedWoken => {
// There was a wake while we held the lock. Send wakes to all tasks.
lock.0 = WakerState::Unlocked;
let wakers = mem::replace(&mut lock.1, Vec::new());
drop(lock);
for waker in wakers {
waker.wake();
}
}
WakerState::Pending | WakerState::Unlocked => {
unreachable!();
}
}
// we just did the drop implementation, don't do it again.
mem::forget(self);
task::Poll::Pending
}
task::Poll::Ready(value) => {
// Drop the pinned Future now that it has completed. Safety: we still hold the lock.
unsafe {
*ptr = None;
}
task::Poll::Ready((self, value))
}
}
}
}
impl<'a, F> Drop for LazyHead<'a, F> {
fn drop(&mut self) {
// Note: this is only called if the poll_inner was Ready or in case of panic. In either
// case, we should transition to an Unlocked state and wake all waiting tasks. If the
// future was ready, they will all be able to pick up the value; if it paniced, the next
// task in line will retry the poll (which will just panic again if the future was
// generated by an async block).
let mut lock = self.waker.wakers.lock().unwrap();
match lock.0 {
WakerState::LockedWoken | WakerState::LockedWithoutWake => {
lock.0 = WakerState::Unlocked;
}
WakerState::Unlocked | WakerState::Pending => {
unreachable!();
}
}
let wakers = mem::replace(&mut lock.1, Vec::new());
drop(lock);
for waker in wakers {
waker.wake();
}
}
}
impl<T, F, I> OnceFuture<T, F, I> {
/// Creates a new OnceFuture with an initializing value
pub const fn with_init(init: I) -> Self {
OnceFuture {
value: UnsafeCell::new(LazyState::New(init)),
inner: LazyInner {
state: AtomicUsize::new(NEW),
queue: AtomicPtr::new(ptr::null_mut()),
},
}
}
/// Creates a new OnceFuture without an initializing value
///
/// The resulting Future must be produced by the closure passed to [Self::get_or_init_with].
/// This function is identical to [Self::new] but is more likely to need type hints.
pub const fn with_no_init() -> Self {
OnceFuture {
value: UnsafeCell::new(LazyState::Running),
inner: LazyInner {
state: AtomicUsize::new(NEW),
queue: AtomicPtr::new(ptr::null_mut()),
},
}
}
/// Creates a new OnceFuture that is immediately ready
pub const fn with_value(value: T) -> Self {
OnceFuture {
value: UnsafeCell::new(LazyState::Ready(value)),
inner: LazyInner {
state: AtomicUsize::new(READY_BIT),
queue: AtomicPtr::new(ptr::null_mut()),
},
}
}
/// Gets the value without blocking or starting the initialization.
pub fn get(&self) -> Option<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
None
} else {
// Safety: READY_BIT is set
unsafe {
match &*self.value.get() {
LazyState::Ready(v) => Some(v),
_ => unreachable!(),
}
}
}
}
/// Get mutable access to the initializer or final value.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn get_mut(&mut self) -> (Option<&mut I>, Option<&mut T>) {
match self.value.get_mut() {
LazyState::New(i) => (Some(i), None),
LazyState::Running => (None, None),
LazyState::Ready(v) => (None, Some(v)),
}
}
/// Gets the initializer or final value
pub fn into_inner(self) -> (Option<I>, Option<T>) {
match self.value.into_inner() {
LazyState::New(i) => (Some(i), None),
LazyState::Running => (None, None),
LazyState::Ready(v) => (None, Some(v)),
}
}
}
impl<T, F> OnceFuture<T, F> {
/// Creates a new OnceFuture without an initializing value
///
/// The resulting Future must be produced by the closure passed to get_or_init_with
pub const fn new() -> Self {
Self::with_no_init()
}
}
impl<F> OnceFuture<F::Output, F>
where
F: Future + Send + 'static,
{
/// Creates a new OnceFuture directly from a Future.
///
/// The `gen_future` or `into_future` closures will never be called.
pub fn from_future(future: F) -> Self {
let rv = Self::new();
let waker = rv.inner.initialize().unwrap();
// Safe because we currently have exclusive ownership
unsafe {
*waker.future.get() = Some(future);
}
rv
}
}
impl<T, F, I> OnceFuture<T, F, I>
where
F: Future<Output = T> + Send + 'static,
{
/// Create and run the future until it produces a result, then return a reference to that
/// result.
///
/// This is a convenience wrapper around [OnceFuture::get_or_populate_with] for use when the
/// initializer value is not used or not present.
pub async fn get_or_init_with(&self, gen_future: impl FnOnce() -> F) -> &T {
self.get_or_populate_with(move |_| gen_future()).await
}
/// Create and run the future until it produces a result, then return a reference to that
/// result.
///
/// Only one `into_future` closure will be called per `OnceFuture` instance, and only if the
/// future was not already set by `from_future`.
pub async fn get_or_populate_with(&self, into_future: impl FnOnce(Option<I>) -> F) -> &T {
struct Get<'a, T, F, I, P>(&'a OnceFuture<T, F, I>, Option<P>);
impl<'a, T, F, I, P> Unpin for Get<'a, T, F, I, P> {}
impl<'a, T, F, I, P> Future for Get<'a, T, F, I, P>
where
F: Future<Output = T> + Send + 'static,
P: FnOnce(Option<I>) -> F,
{
type Output = &'a T;
fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
self.0.poll_populate(cx, |i| (self.1.take().unwrap())(i))
}
}
Get(self, Some(into_future)).await
}
/// Create and run the future until it produces a result, then return a reference to that
/// result.
///
/// Only one `into_future` closure will be called per `OnceFuture` instance, and only if the
/// future was not already set by `from_future`.
pub fn poll_populate(
&self,
cx: &mut task::Context<'_>,
into_future: impl FnOnce(Option<I>) -> F,
) -> task::Poll<&T> {
let state = self.inner.state.load(Ordering::Acquire);
if state & READY_BIT == 0 {
match self.init_slow(cx, into_future) {
task::Poll::Pending => return task::Poll::Pending,
task::Poll::Ready(()) => {}
}
}
// Safety: just initialized
unsafe {
match &*self.value.get() {
LazyState::Ready(v) => task::Poll::Ready(v),
_ => unreachable!(),
}
}
}
/// Do the actual init work. If this returns Ready, the initialization succeeded.
#[cold]
fn init_slow(
&self,
cx: &mut task::Context<'_>,
into_future: impl FnOnce(Option<I>) -> F,
) -> task::Poll<()> {
let waker = self.inner.initialize();
let waker = match waker {
Some(waker) => waker,
None => return task::Poll::Ready(()),
};
match waker.poll_head(cx, &self.inner) {
task::Poll::Ready(Some(init_lock)) => {
// Safety: init_lock ensures we have exclusive access
let value = mem::replace(unsafe { &mut *self.value.get() }, LazyState::Running);
let init = match value {
LazyState::New(init) => Some(init),
LazyState::Running => None,
LazyState::Ready(_) => unreachable!(),
};
match init_lock.poll_inner(move || into_future(init)) {
task::Poll::Ready((lock, value)) => {
// Safety: we still hold the lock
unsafe {
*self.value.get() = LazyState::Ready(value);
}
self.inner.set_ready();
drop(lock);
}
task::Poll::Pending => return task::Poll::Pending,
}
}
task::Poll::Ready(None) => return task::Poll::Ready(()),
task::Poll::Pending => return task::Poll::Pending,
}
task::Poll::Ready(())
}
}
/// A value which is initialized on the first access.
///
/// See [ConstLazy] if you need to initialize in a const context.
///
/// ```
/// # async fn run() {
/// use std::sync::Arc;
/// use async_once_cell::Lazy;
///
/// let shared = Arc::new(Lazy::new(async {
/// 4
/// }));
///
/// let value : &i32 = shared.get().await;
/// assert_eq!(value, &4);
/// # }
/// ```
///
/// You can also call `await` on a reference:
///
/// ```
/// # async fn run() {
/// use async_once_cell::Lazy;
/// struct Foo {
/// value: Lazy<i32>,
/// }
///
/// let foo = Foo {
/// value : Lazy::new(Box::pin(async { 4 })),
/// };
///
/// assert_eq!((&foo.value).await, &4);
/// # }
/// ```
#[derive(Debug)]
pub struct Lazy<T, F = Pin<Box<dyn Future<Output = T> + Send>>> {
once: OnceFuture<T, F>,
}
impl<T, F> Lazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
/// Creates a new lazy value with the given initializing future.
pub fn new(future: F) -> Self {
Lazy { once: OnceFuture::from_future(future) }
}
/// Forces the evaluation of this lazy value and returns a reference to the result.
///
/// This is equivalent to the `Future` impl on `&Lazy`, but is explicit and may be simpler to
/// call. This will panic if the initializing closure panics or has panicked.
pub async fn get(&self) -> &T {
self.await
}
}
impl<T, F> Lazy<T, F> {
/// Creates an already-initialized lazy value.
pub const fn with_value(value: T) -> Self {
Self { once: OnceFuture::with_value(value) }
}
/// Gets the value without blocking or starting the initialization.
pub fn try_get(&self) -> Option<&T> {
self.once.get()
}
/// Gets the value without blocking or starting the initialization.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn try_get_mut(&mut self) -> Option<&mut T> {
self.once.get_mut().1
}
/// Gets the value if it was set.
pub fn into_value(self) -> Option<T> {
// It would be confusing to only sometimes return the future, and it's rarely useful.
self.once.into_inner().1
}
}
impl<'a, T, F> Future for &'a Lazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
type Output = &'a T;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
// The init closure is unreachable because we always start with the Future set.
self.once.poll_populate(cx, |_| unreachable!())
}
}
/// A value which is initialized on the first access.
///
/// Note: This structure may be larger in size than [Lazy], but it does not allocate on the heap
/// until it is first polled, so is suitable for initializing statics.
#[derive(Debug)]
pub struct ConstLazy<T, F> {
once: OnceFuture<T, F, F>,
}
impl<T, F> ConstLazy<T, F> {
/// Creates a new lazy value with the given initializing future.
pub const fn new(future: F) -> Self {
ConstLazy { once: OnceFuture::with_init(future) }
}
/// Creates an already-initialized lazy value.
pub const fn with_value(value: T) -> Self {
Self { once: OnceFuture::with_value(value) }
}
/// Gets the value without blocking or starting the initialization.
pub fn try_get(&self) -> Option<&T> {
self.once.get()
}
/// Gets the value without blocking or starting the initialization.
///
/// This requires mutable access to self, so rust's aliasing rules prevent any concurrent
/// access and allow violating the usual rules for accessing this cell.
pub fn try_get_mut(&mut self) -> Option<&mut T> {
self.once.get_mut().1
}
/// Gets the value if it was set.
pub fn into_value(self) -> Option<T> {
// It would be confusing to only sometimes return the future, and it's rarely useful.
self.once.into_inner().1
}
}
impl<T, F> ConstLazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
/// Forces the evaluation of this lazy value and returns a reference to the result.
///
/// This is equivalent to the `Future` impl on `&ConstLazy`, but is explicit and may be simpler
/// to call. This will panic if the initializing closure panics or has panicked.
pub async fn get(&self) -> &T {
self.await
}
}
impl<'a, T, F> Future for &'a ConstLazy<T, F>
where
F: Future<Output = T> + Send + 'static,
{
type Output = &'a T;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> task::Poll<&'a T> {
// The init closure always has an initialization value
self.once.poll_populate(cx, |i| i.unwrap_or_else(|| unreachable!()))
}
}