1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
use core::mem;
use either::Either;
use pollster::FutureExt;
use self::error::{Error, TransactionError};
use super::*;
/// WriteTransaction is used to perform writes to the database. It is created by
/// calling [`TransactionDB::write`].
pub struct WriteTransaction<
D: AsyncDatabase,
W: AsyncPendingManager,
S: AsyncSpawner,
H = std::hash::RandomState,
> {
pub(super) db: TransactionDB<D, S, H>,
pub(super) read_ts: u64,
pub(super) size: u64,
pub(super) count: u64,
// contains fingerprints of keys read.
pub(super) reads: MediumVec<u64>,
// contains fingerprints of keys written. This is used for conflict detection.
pub(super) conflict_keys: Option<IndexSet<u64, H>>,
// buffer stores any writes done by txn.
pub(super) pending_writes: Option<W>,
// Used in managed mode to store duplicate entries.
pub(super) duplicate_writes: OneOrMore<Entry<D::Key, D::Value>>,
pub(super) discarded: bool,
pub(super) done_read: bool,
}
impl<D, W, S, H> Drop for WriteTransaction<D, W, S, H>
where
D: AsyncDatabase,
W: AsyncPendingManager,
S: AsyncSpawner,
{
fn drop(&mut self) {
if !self.discarded {
self.discard().block_on();
}
}
}
impl<D, W, S, H> WriteTransaction<D, W, S, H>
where
D: AsyncDatabase,
W: AsyncPendingManager<Key = D::Key, Value = D::Value>,
S: AsyncSpawner,
H: BuildHasher + Default,
{
/// Insert a key-value pair to the database.
pub async fn insert(&mut self, key: D::Key, value: D::Value) -> Result<(), Error<D, W>> {
self.insert_with_in(key, value).await
}
/// Removes a key.
///
/// This is done by adding a delete marker for the key at commit timestamp. Any
/// reads happening before this timestamp would be unaffected. Any reads after
/// this commit would see the deletion.
pub async fn remove(&mut self, key: D::Key) -> Result<(), Error<D, W>> {
self
.modify(Entry {
data: EntryData::Remove(key),
version: 0,
})
.await
}
/// Looks for key and returns corresponding Item.
pub async fn get<'a, 'b: 'a>(
&'a mut self,
key: &'b D::Key,
) -> Result<Option<Item<'a, D::Key, D::Value, D::ItemRef<'a>, D::Item>>, Error<D, W>> {
if self.discarded {
return Err(Error::transaction(TransactionError::Discard));
}
if let Some(e) = self
.pending_writes
.as_ref()
.unwrap()
.get(key)
.await
.map_err(TransactionError::Manager)?
{
// If the value is None, it means that the key is removed.
if e.value.is_none() {
return Ok(None);
}
// Fulfill from buffer.
return Ok(Some(Item::Pending(EntryRef {
data: match &e.value {
Some(value) => EntryDataRef::Insert { key, value },
None => EntryDataRef::Remove(key),
},
version: e.version,
})));
} else {
// track reads. No need to track read if txn serviced it
// internally.
let fp = self.database().fingerprint(key);
self.reads.push(fp);
}
self
.db
.inner
.db
.get(key, self.read_ts)
.await
.map_err(Error::database)
.map(move |item| {
item.map(|item| match item {
Either::Left(item) => Item::Borrowed(item),
Either::Right(item) => Item::Owned(item),
})
})
}
/// Returns an iterator.
pub async fn iter(&self, opts: IteratorOptions) -> Result<D::Iterator<'_>, Error<D, W>> {
if self.discarded {
return Err(Error::transaction(TransactionError::Discard));
}
Ok(
self
.database()
.iter(
self
.pending_writes
.as_ref()
.unwrap()
.iter()
.await
.map(|(k, v)| EntryRef {
data: match &v.value {
Some(value) => EntryDataRef::Insert { key: k, value },
None => EntryDataRef::Remove(k),
},
version: self.read_ts,
}),
self.read_ts,
opts,
)
.await,
)
}
/// Returns an iterator over keys.
pub async fn keys(&self, opts: KeysOptions) -> Result<D::Keys<'_>, Error<D, W>> {
if self.discarded {
return Err(Error::transaction(TransactionError::Discard));
}
Ok(
self
.db
.inner
.db
.keys(
self
.pending_writes
.as_ref()
.unwrap()
.keys()
.await
.map(|k| KeyRef {
key: k,
version: self.read_ts,
}),
self.read_ts,
opts,
)
.await,
)
}
/// Commits the transaction, following these steps:
///
/// 1. If there are no writes, return immediately.
///
/// 2. Check if read rows were updated since txn started. If so, return `TransactionError::Conflict`.
///
/// 3. If no conflict, generate a commit timestamp and update written rows' commit ts.
///
/// 4. Batch up all writes, write them to database.
///
/// 5. If callback is provided, Badger will return immediately after checking
/// for conflicts. Writes to the database will happen in the background. If
/// there is a conflict, an error will be returned and the callback will not
/// run. If there are no conflicts, the callback will be called in the
/// background upon successful completion of writes or any error during write.
///
/// If error is nil, the transaction is successfully committed. In case of a non-nil error, the LSM
/// tree won't be updated, so there's no need for any rollback.
pub async fn commit(&mut self) -> Result<(), Error<D, W>> {
if self.discarded {
return Err(Error::transaction(TransactionError::Discard));
}
if self.pending_writes.as_ref().unwrap().is_empty() {
// Nothing to commit
self.discard().await;
return Ok(());
}
let (commit_ts, entries) = match self.commit_entries().await {
Ok((commit_ts, entries)) => (commit_ts, entries),
Err(e) => {
return Err(match e {
TransactionError::Conflict => Error::Transaction(e),
_ => {
self.discard().await;
Error::Transaction(e)
}
});
}
};
match self.db.inner.db.apply(entries).await {
Ok(_) => {
self.orc().done_commit(commit_ts).await;
self.discard().await;
Ok(())
}
Err(e) => {
self.orc().done_commit(commit_ts).await;
Err(Error::database(e))
}
}
}
}
impl<D, W, S, H> WriteTransaction<D, W, S, H>
where
D: AsyncDatabase + Send + Sync,
D::Key: Send,
D::Value: Send,
W: AsyncPendingManager<Key = D::Key, Value = D::Value> + Send,
S: AsyncSpawner,
H: BuildHasher + Default + Send + Sync + 'static,
{
/// Acts like [`commit`](WriteTransaction::commit), but takes a future and a spawner, which gets run via a
/// task to avoid blocking this function. Following these steps:
///
/// 1. If there are no writes, return immediately, a new task will be spawned, and future will be invoked.
///
/// 2. Check if read rows were updated since txn started. If so, return `TransactionError::Conflict`.
///
/// 3. If no conflict, generate a commit timestamp and update written rows' commit ts.
///
/// 4. Batch up all writes, write them to database.
///
/// 5. Return immediately after checking for conflicts.
/// If there is a conflict, an error will be returned immediately and the no task will be spawned
/// run. If there are no conflicts, a task will be spawned and the future will be called in the
/// background upon successful completion of writes or any error during write.
///
/// If error does not occur, the transaction is successfully committed. In case of an error, the DB
/// should not be updated (The implementors of [`AsyncDatabase`] must promise this), so there's no need for any rollback.
pub async fn commit_with_task<R>(
&mut self,
fut: impl FnOnce(Result<(), D::Error>) -> R + Send + 'static,
) -> Result<S::JoinHandle<R>, Error<D, W>>
where
R: Send + 'static,
{
if self.discarded {
return Err(Error::transaction(TransactionError::Discard));
}
if self.pending_writes.as_ref().unwrap().is_empty() {
// Nothing to commit
self.discard().await;
return Ok(S::spawn(async move { fut(Ok(())) }));
}
let (commit_ts, entries) = match self.commit_entries().await {
Ok((commit_ts, entries)) => (commit_ts, entries),
Err(e) => {
return Err(match e {
TransactionError::Conflict => Error::Transaction(e),
_ => {
self.discard().await;
Error::Transaction(e)
}
});
}
};
let db = self.db.clone();
Ok(S::spawn(async move {
fut(match db.database().apply(entries).await {
Ok(_) => {
db.orc().done_commit(commit_ts).await;
Ok(())
}
Err(e) => {
db.orc().done_commit(commit_ts).await;
Err(e)
}
})
}))
}
}
impl<D, W, S, H> WriteTransaction<D, W, S, H>
where
D: AsyncDatabase,
W: AsyncPendingManager<Key = D::Key, Value = D::Value>,
S: AsyncSpawner,
H: BuildHasher + Default,
{
async fn insert_with_in(&mut self, key: D::Key, value: D::Value) -> Result<(), Error<D, W>> {
let ent = Entry {
data: EntryData::Insert { key, value },
version: self.read_ts,
};
self.modify(ent).await
}
fn check_and_update_size(&mut self, ent: &Entry<D::Key, D::Value>) -> Result<(), Error<D, W>> {
let cnt = self.count + 1;
let database = self.database();
// Extra bytes for the version in key.
let size = self.size + database.estimate_size(ent);
if cnt >= database.max_batch_entries() || size >= database.max_batch_size() {
return Err(Error::transaction(TransactionError::LargeTxn));
}
self.count = cnt;
self.size = size;
Ok(())
}
async fn modify(&mut self, ent: Entry<D::Key, D::Value>) -> Result<(), Error<D, W>> {
if self.discarded {
return Err(Error::transaction(TransactionError::Discard));
}
self
.db
.inner
.db
.validate_entry(&ent)
.map_err(Error::database)?;
self.check_and_update_size(&ent)?;
// The txn.conflictKeys is used for conflict detection. If conflict detection
// is disabled, we don't need to store key hashes in this map.
if let Some(ref mut conflict_keys) = self.conflict_keys {
let fp = self.db.inner.db.fingerprint(ent.key());
conflict_keys.insert(fp);
}
// If a duplicate entry was inserted in managed mode, move it to the duplicate writes slice.
// Add the entry to duplicateWrites only if both the entries have different versions. For
// same versions, we will overwrite the existing entry.
let eversion = ent.version;
let (ek, ev) = ent.split();
let pending_writes = self.pending_writes.as_mut().unwrap();
if let Some((old_key, old_value)) = pending_writes
.remove_entry(&ek)
.await
.map_err(TransactionError::Manager)?
{
if old_value.version != eversion {
self
.duplicate_writes
.push(Entry::unsplit(old_key, old_value));
}
}
pending_writes
.insert(ek, ev)
.await
.map_err(TransactionError::Manager)?;
Ok(())
}
async fn commit_entries(
&mut self,
) -> Result<(u64, OneOrMore<Entry<D::Key, D::Value>>), TransactionError<W>> {
// Ensure that the order in which we get the commit timestamp is the same as
// the order in which we push these updates to the write channel. So, we
// acquire a writeChLock before getting a commit timestamp, and only release
// it after pushing the entries to it.
let _write_lock = self.db.inner.orc.write_serialize_lock.lock();
let reads = if self.reads.is_empty() {
MediumVec::new()
} else {
mem::take(&mut self.reads)
};
let conflict_keys = if self.conflict_keys.is_none() {
None
} else {
mem::take(&mut self.conflict_keys)
};
match self
.db
.inner
.orc
.new_commit_ts(&mut self.done_read, self.read_ts, reads, conflict_keys)
.await
{
CreateCommitTimestampResult::Conflict {
conflict_keys,
reads,
} => {
// If there is a conflict, we should not send the updates to the write channel.
// Instead, we should return the conflict error to the user.
self.reads = reads;
self.conflict_keys = conflict_keys;
Err(TransactionError::Conflict)
}
CreateCommitTimestampResult::Timestamp(commit_ts) => {
let pending_writes = mem::take(&mut self.pending_writes).unwrap();
let duplicate_writes = mem::take(&mut self.duplicate_writes);
let mut entries =
OneOrMore::with_capacity(pending_writes.len() + self.duplicate_writes.len());
let mut process_entry = |mut ent: Entry<D::Key, D::Value>| {
ent.version = commit_ts;
entries.push(ent);
};
pending_writes
.into_iter()
.await
.for_each(|(k, v)| process_entry(Entry::unsplit(k, v)));
duplicate_writes.into_iter().for_each(process_entry);
// CommitTs should not be zero if we're inserting transaction markers.
assert_ne!(commit_ts, 0);
Ok((commit_ts, entries))
}
}
}
}
impl<D, W, S, H> WriteTransaction<D, W, S, H>
where
D: AsyncDatabase,
W: AsyncPendingManager,
S: AsyncSpawner,
{
async fn done_read(&mut self) {
if !self.done_read {
self.done_read = true;
self.orc().read_mark.done_unchecked(self.read_ts).await;
}
}
#[inline]
fn database(&self) -> &D {
&self.db.inner.db
}
#[inline]
fn orc(&self) -> &Oracle<S, H> {
&self.db.inner.orc
}
/// Discards a created transaction. This method is very important and must be called. `commit*`
/// methods calls this internally, however, calling this multiple times doesn't cause any issues. So,
/// this can safely be called via a defer right when transaction is created.
///
/// NOTE: If any operations are run on a discarded transaction, [`TransactionError::Discard`] is returned.
pub async fn discard(&mut self) {
if self.discarded {
return;
}
self.discarded = true;
self.done_read().await;
}
}