async_io/lib.rs
1//! Async I/O and timers.
2//!
3//! This crate provides two tools:
4//!
5//! * [`Async`], an adapter for standard networking types (and [many other] types) to use in
6//! async programs.
7//! * [`Timer`], a future or stream that emits timed events.
8//!
9//! For concrete async networking types built on top of this crate, see [`async-net`].
10//!
11//! [many other]: https://github.com/smol-rs/async-io/tree/master/examples
12//! [`async-net`]: https://docs.rs/async-net
13//!
14//! # Implementation
15//!
16//! The first time [`Async`] or [`Timer`] is used, a thread named "async-io" will be spawned.
17//! The purpose of this thread is to wait for I/O events reported by the operating system, and then
18//! wake appropriate futures blocked on I/O or timers when they can be resumed.
19//!
20//! To wait for the next I/O event, the "async-io" thread uses [epoll] on Linux/Android/illumos,
21//! [kqueue] on macOS/iOS/BSD, [event ports] on illumos/Solaris, and [IOCP] on Windows. That
22//! functionality is provided by the [`polling`] crate.
23//!
24//! However, note that you can also process I/O events and wake futures on any thread using the
25//! [`block_on()`] function. The "async-io" thread is therefore just a fallback mechanism
26//! processing I/O events in case no other threads are.
27//!
28//! [epoll]: https://en.wikipedia.org/wiki/Epoll
29//! [kqueue]: https://en.wikipedia.org/wiki/Kqueue
30//! [event ports]: https://illumos.org/man/port_create
31//! [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
32//! [`polling`]: https://docs.rs/polling
33//!
34//! # Examples
35//!
36//! Connect to `example.com:80`, or time out after 10 seconds.
37//!
38//! ```
39//! use async_io::{Async, Timer};
40//! use futures_lite::{future::FutureExt, io};
41//!
42//! use std::net::{TcpStream, ToSocketAddrs};
43//! use std::time::Duration;
44//!
45//! # futures_lite::future::block_on(async {
46//! let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
47//!
48//! let stream = Async::<TcpStream>::connect(addr).or(async {
49//! Timer::after(Duration::from_secs(10)).await;
50//! Err(io::ErrorKind::TimedOut.into())
51//! })
52//! .await?;
53//! # std::io::Result::Ok(()) });
54//! ```
55
56#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
57#![doc(
58 html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
59)]
60#![doc(
61 html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
62)]
63
64use std::future::Future;
65use std::io::{self, IoSlice, IoSliceMut, Read, Write};
66use std::net::{SocketAddr, TcpListener, TcpStream, UdpSocket};
67use std::pin::Pin;
68use std::sync::Arc;
69use std::task::{Context, Poll, Waker};
70use std::time::{Duration, Instant};
71
72#[cfg(unix)]
73use std::{
74 os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd},
75 os::unix::net::{SocketAddr as UnixSocketAddr, UnixDatagram, UnixListener, UnixStream},
76 path::Path,
77};
78
79#[cfg(windows)]
80use std::os::windows::io::{AsRawSocket, AsSocket, BorrowedSocket, OwnedSocket, RawSocket};
81
82use futures_io::{AsyncRead, AsyncWrite};
83use futures_lite::stream::{self, Stream};
84use futures_lite::{future, pin, ready};
85
86use rustix::io as rio;
87use rustix::net as rn;
88use rustix::net::addr::SocketAddrArg;
89
90use crate::reactor::{Reactor, Registration, Source};
91
92mod driver;
93mod reactor;
94
95pub mod os;
96
97pub use driver::block_on;
98pub use reactor::{Readable, ReadableOwned, Writable, WritableOwned};
99
100/// A future or stream that emits timed events.
101///
102/// Timers are futures that output a single [`Instant`] when they fire.
103///
104/// Timers are also streams that can output [`Instant`]s periodically.
105///
106/// # Precision
107///
108/// There is a limit on the maximum precision that a `Timer` can provide. This limit is
109/// dependent on the current platform; for instance, on Windows, the maximum precision is
110/// about 16 milliseconds. Because of this limit, the timer may sleep for longer than the
111/// requested duration. It will never sleep for less.
112///
113/// # Examples
114///
115/// Sleep for 1 second:
116///
117/// ```
118/// use async_io::Timer;
119/// use std::time::Duration;
120///
121/// # futures_lite::future::block_on(async {
122/// Timer::after(Duration::from_secs(1)).await;
123/// # });
124/// ```
125///
126/// Timeout after 1 second:
127///
128/// ```
129/// use async_io::Timer;
130/// use futures_lite::FutureExt;
131/// use std::time::Duration;
132///
133/// # futures_lite::future::block_on(async {
134/// let addrs = async_net::resolve("google.com:80")
135/// .or(async {
136/// Timer::after(Duration::from_secs(1)).await;
137/// Err(std::io::ErrorKind::TimedOut.into())
138/// })
139/// .await?;
140/// # std::io::Result::Ok(()) });
141/// ```
142#[derive(Debug)]
143pub struct Timer {
144 /// This timer's ID and last waker that polled it.
145 ///
146 /// When this field is set to `None`, this timer is not registered in the reactor.
147 id_and_waker: Option<(usize, Waker)>,
148
149 /// The next instant at which this timer fires.
150 ///
151 /// If this timer is a blank timer, this value is None. If the timer
152 /// must be set, this value contains the next instant at which the
153 /// timer must fire.
154 when: Option<Instant>,
155
156 /// The period.
157 period: Duration,
158}
159
160impl Timer {
161 /// Creates a timer that will never fire.
162 ///
163 /// # Examples
164 ///
165 /// This function may also be useful for creating a function with an optional timeout.
166 ///
167 /// ```
168 /// # futures_lite::future::block_on(async {
169 /// use async_io::Timer;
170 /// use futures_lite::prelude::*;
171 /// use std::time::Duration;
172 ///
173 /// async fn run_with_timeout(timeout: Option<Duration>) {
174 /// let timer = timeout
175 /// .map(|timeout| Timer::after(timeout))
176 /// .unwrap_or_else(Timer::never);
177 ///
178 /// run_lengthy_operation().or(timer).await;
179 /// }
180 /// # // Note that since a Timer as a Future returns an Instant,
181 /// # // this function needs to return an Instant to be used
182 /// # // in "or".
183 /// # async fn run_lengthy_operation() -> std::time::Instant {
184 /// # std::time::Instant::now()
185 /// # }
186 ///
187 /// // Times out after 5 seconds.
188 /// run_with_timeout(Some(Duration::from_secs(5))).await;
189 /// // Does not time out.
190 /// run_with_timeout(None).await;
191 /// # });
192 /// ```
193 pub fn never() -> Timer {
194 Timer {
195 id_and_waker: None,
196 when: None,
197 period: Duration::MAX,
198 }
199 }
200
201 /// Creates a timer that emits an event once after the given duration of time.
202 ///
203 /// # Examples
204 ///
205 /// ```
206 /// use async_io::Timer;
207 /// use std::time::Duration;
208 ///
209 /// # futures_lite::future::block_on(async {
210 /// Timer::after(Duration::from_secs(1)).await;
211 /// # });
212 /// ```
213 pub fn after(duration: Duration) -> Timer {
214 Instant::now()
215 .checked_add(duration)
216 .map_or_else(Timer::never, Timer::at)
217 }
218
219 /// Creates a timer that emits an event once at the given time instant.
220 ///
221 /// # Examples
222 ///
223 /// ```
224 /// use async_io::Timer;
225 /// use std::time::{Duration, Instant};
226 ///
227 /// # futures_lite::future::block_on(async {
228 /// let now = Instant::now();
229 /// let when = now + Duration::from_secs(1);
230 /// Timer::at(when).await;
231 /// # });
232 /// ```
233 pub fn at(instant: Instant) -> Timer {
234 Timer::interval_at(instant, Duration::MAX)
235 }
236
237 /// Creates a timer that emits events periodically.
238 ///
239 /// # Examples
240 ///
241 /// ```
242 /// use async_io::Timer;
243 /// use futures_lite::StreamExt;
244 /// use std::time::{Duration, Instant};
245 ///
246 /// # futures_lite::future::block_on(async {
247 /// let period = Duration::from_secs(1);
248 /// Timer::interval(period).next().await;
249 /// # });
250 /// ```
251 pub fn interval(period: Duration) -> Timer {
252 Instant::now()
253 .checked_add(period)
254 .map_or_else(Timer::never, |at| Timer::interval_at(at, period))
255 }
256
257 /// Creates a timer that emits events periodically, starting at `start`.
258 ///
259 /// # Examples
260 ///
261 /// ```
262 /// use async_io::Timer;
263 /// use futures_lite::StreamExt;
264 /// use std::time::{Duration, Instant};
265 ///
266 /// # futures_lite::future::block_on(async {
267 /// let start = Instant::now();
268 /// let period = Duration::from_secs(1);
269 /// Timer::interval_at(start, period).next().await;
270 /// # });
271 /// ```
272 pub fn interval_at(start: Instant, period: Duration) -> Timer {
273 Timer {
274 id_and_waker: None,
275 when: Some(start),
276 period,
277 }
278 }
279
280 /// Indicates whether or not this timer will ever fire.
281 ///
282 /// [`never()`] will never fire, and timers created with [`after()`] or [`at()`] will fire
283 /// if the duration is not too large.
284 ///
285 /// [`never()`]: Timer::never()
286 /// [`after()`]: Timer::after()
287 /// [`at()`]: Timer::at()
288 ///
289 /// # Examples
290 ///
291 /// ```
292 /// # futures_lite::future::block_on(async {
293 /// use async_io::Timer;
294 /// use futures_lite::prelude::*;
295 /// use std::time::Duration;
296 ///
297 /// // `never` will never fire.
298 /// assert!(!Timer::never().will_fire());
299 ///
300 /// // `after` will fire if the duration is not too large.
301 /// assert!(Timer::after(Duration::from_secs(1)).will_fire());
302 /// assert!(!Timer::after(Duration::MAX).will_fire());
303 ///
304 /// // However, once an `after` timer has fired, it will never fire again.
305 /// let mut t = Timer::after(Duration::from_secs(1));
306 /// assert!(t.will_fire());
307 /// (&mut t).await;
308 /// assert!(!t.will_fire());
309 ///
310 /// // Interval timers will fire periodically.
311 /// let mut t = Timer::interval(Duration::from_secs(1));
312 /// assert!(t.will_fire());
313 /// t.next().await;
314 /// assert!(t.will_fire());
315 /// # });
316 /// ```
317 #[inline]
318 pub fn will_fire(&self) -> bool {
319 self.when.is_some()
320 }
321
322 /// Sets the timer to emit an event once after the given duration of time.
323 ///
324 /// Note that resetting a timer is different from creating a new timer because
325 /// [`set_after()`][`Timer::set_after()`] does not remove the waker associated with the task
326 /// that is polling the timer.
327 ///
328 /// # Examples
329 ///
330 /// ```
331 /// use async_io::Timer;
332 /// use std::time::Duration;
333 ///
334 /// # futures_lite::future::block_on(async {
335 /// let mut t = Timer::after(Duration::from_secs(1));
336 /// t.set_after(Duration::from_millis(100));
337 /// # });
338 /// ```
339 pub fn set_after(&mut self, duration: Duration) {
340 match Instant::now().checked_add(duration) {
341 Some(instant) => self.set_at(instant),
342 None => {
343 // Overflow to never going off.
344 self.clear();
345 self.when = None;
346 }
347 }
348 }
349
350 /// Sets the timer to emit an event once at the given time instant.
351 ///
352 /// Note that resetting a timer is different from creating a new timer because
353 /// [`set_at()`][`Timer::set_at()`] does not remove the waker associated with the task
354 /// that is polling the timer.
355 ///
356 /// # Examples
357 ///
358 /// ```
359 /// use async_io::Timer;
360 /// use std::time::{Duration, Instant};
361 ///
362 /// # futures_lite::future::block_on(async {
363 /// let mut t = Timer::after(Duration::from_secs(1));
364 ///
365 /// let now = Instant::now();
366 /// let when = now + Duration::from_secs(1);
367 /// t.set_at(when);
368 /// # });
369 /// ```
370 pub fn set_at(&mut self, instant: Instant) {
371 self.clear();
372
373 // Update the timeout.
374 self.when = Some(instant);
375
376 if let Some((id, waker)) = self.id_and_waker.as_mut() {
377 // Re-register the timer with the new timeout.
378 *id = Reactor::get().insert_timer(instant, waker);
379 }
380 }
381
382 /// Sets the timer to emit events periodically.
383 ///
384 /// Note that resetting a timer is different from creating a new timer because
385 /// [`set_interval()`][`Timer::set_interval()`] does not remove the waker associated with the
386 /// task that is polling the timer.
387 ///
388 /// # Examples
389 ///
390 /// ```
391 /// use async_io::Timer;
392 /// use futures_lite::StreamExt;
393 /// use std::time::{Duration, Instant};
394 ///
395 /// # futures_lite::future::block_on(async {
396 /// let mut t = Timer::after(Duration::from_secs(1));
397 ///
398 /// let period = Duration::from_secs(2);
399 /// t.set_interval(period);
400 /// # });
401 /// ```
402 pub fn set_interval(&mut self, period: Duration) {
403 match Instant::now().checked_add(period) {
404 Some(instant) => self.set_interval_at(instant, period),
405 None => {
406 // Overflow to never going off.
407 self.clear();
408 self.when = None;
409 }
410 }
411 }
412
413 /// Sets the timer to emit events periodically, starting at `start`.
414 ///
415 /// Note that resetting a timer is different from creating a new timer because
416 /// [`set_interval_at()`][`Timer::set_interval_at()`] does not remove the waker associated with
417 /// the task that is polling the timer.
418 ///
419 /// # Examples
420 ///
421 /// ```
422 /// use async_io::Timer;
423 /// use futures_lite::StreamExt;
424 /// use std::time::{Duration, Instant};
425 ///
426 /// # futures_lite::future::block_on(async {
427 /// let mut t = Timer::after(Duration::from_secs(1));
428 ///
429 /// let start = Instant::now();
430 /// let period = Duration::from_secs(2);
431 /// t.set_interval_at(start, period);
432 /// # });
433 /// ```
434 pub fn set_interval_at(&mut self, start: Instant, period: Duration) {
435 self.clear();
436
437 self.when = Some(start);
438 self.period = period;
439
440 if let Some((id, waker)) = self.id_and_waker.as_mut() {
441 // Re-register the timer with the new timeout.
442 *id = Reactor::get().insert_timer(start, waker);
443 }
444 }
445
446 /// Helper function to clear the current timer.
447 fn clear(&mut self) {
448 if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.as_ref()) {
449 // Deregister the timer from the reactor.
450 Reactor::get().remove_timer(when, *id);
451 }
452 }
453}
454
455impl Drop for Timer {
456 fn drop(&mut self) {
457 if let (Some(when), Some((id, _))) = (self.when, self.id_and_waker.take()) {
458 // Deregister the timer from the reactor.
459 Reactor::get().remove_timer(when, id);
460 }
461 }
462}
463
464impl Future for Timer {
465 type Output = Instant;
466
467 fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
468 match self.poll_next(cx) {
469 Poll::Ready(Some(when)) => Poll::Ready(when),
470 Poll::Pending => Poll::Pending,
471 Poll::Ready(None) => unreachable!(),
472 }
473 }
474}
475
476impl Stream for Timer {
477 type Item = Instant;
478
479 fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
480 let this = self.get_mut();
481
482 if let Some(ref mut when) = this.when {
483 // Check if the timer has already fired.
484 if Instant::now() >= *when {
485 if let Some((id, _)) = this.id_and_waker.take() {
486 // Deregister the timer from the reactor.
487 Reactor::get().remove_timer(*when, id);
488 }
489 let result_time = *when;
490 if let Some(next) = (*when).checked_add(this.period) {
491 *when = next;
492 // Register the timer in the reactor.
493 let id = Reactor::get().insert_timer(next, cx.waker());
494 this.id_and_waker = Some((id, cx.waker().clone()));
495 } else {
496 this.when = None;
497 }
498 return Poll::Ready(Some(result_time));
499 } else {
500 match &this.id_and_waker {
501 None => {
502 // Register the timer in the reactor.
503 let id = Reactor::get().insert_timer(*when, cx.waker());
504 this.id_and_waker = Some((id, cx.waker().clone()));
505 }
506 Some((id, w)) if !w.will_wake(cx.waker()) => {
507 // Deregister the timer from the reactor to remove the old waker.
508 Reactor::get().remove_timer(*when, *id);
509
510 // Register the timer in the reactor with the new waker.
511 let id = Reactor::get().insert_timer(*when, cx.waker());
512 this.id_and_waker = Some((id, cx.waker().clone()));
513 }
514 Some(_) => {}
515 }
516 }
517 }
518
519 Poll::Pending
520 }
521}
522
523/// Async adapter for I/O types.
524///
525/// This type puts an I/O handle into non-blocking mode, registers it in
526/// [epoll]/[kqueue]/[event ports]/[IOCP], and then provides an async interface for it.
527///
528/// [epoll]: https://en.wikipedia.org/wiki/Epoll
529/// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
530/// [event ports]: https://illumos.org/man/port_create
531/// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
532///
533/// # Caveats
534///
535/// [`Async`] is a low-level primitive, and as such it comes with some caveats.
536///
537/// For higher-level primitives built on top of [`Async`], look into [`async-net`] or
538/// [`async-process`] (on Unix).
539///
540/// The most notable caveat is that it is unsafe to access the inner I/O source mutably
541/// using this primitive. Traits likes [`AsyncRead`] and [`AsyncWrite`] are not implemented by
542/// default unless it is guaranteed that the resource won't be invalidated by reading or writing.
543/// See the [`IoSafe`] trait for more information.
544///
545/// [`async-net`]: https://github.com/smol-rs/async-net
546/// [`async-process`]: https://github.com/smol-rs/async-process
547/// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html
548/// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html
549///
550/// ### Supported types
551///
552/// [`Async`] supports all networking types, as well as some OS-specific file descriptors like
553/// [timerfd] and [inotify].
554///
555/// However, do not use [`Async`] with types like [`File`][`std::fs::File`],
556/// [`Stdin`][`std::io::Stdin`], [`Stdout`][`std::io::Stdout`], or [`Stderr`][`std::io::Stderr`]
557/// because all operating systems have issues with them when put in non-blocking mode.
558///
559/// [timerfd]: https://github.com/smol-rs/async-io/blob/master/examples/linux-timerfd.rs
560/// [inotify]: https://github.com/smol-rs/async-io/blob/master/examples/linux-inotify.rs
561///
562/// ### Concurrent I/O
563///
564/// Note that [`&Async<T>`][`Async`] implements [`AsyncRead`] and [`AsyncWrite`] if `&T`
565/// implements those traits, which means tasks can concurrently read and write using shared
566/// references.
567///
568/// But there is a catch: only one task can read a time, and only one task can write at a time. It
569/// is okay to have two tasks where one is reading and the other is writing at the same time, but
570/// it is not okay to have two tasks reading at the same time or writing at the same time. If you
571/// try to do that, conflicting tasks will just keep waking each other in turn, thus wasting CPU
572/// time.
573///
574/// Besides [`AsyncRead`] and [`AsyncWrite`], this caveat also applies to
575/// [`poll_readable()`][`Async::poll_readable()`] and
576/// [`poll_writable()`][`Async::poll_writable()`].
577///
578/// However, any number of tasks can be concurrently calling other methods like
579/// [`readable()`][`Async::readable()`] or [`read_with()`][`Async::read_with()`].
580///
581/// ### Closing
582///
583/// Closing the write side of [`Async`] with [`close()`][`futures_lite::AsyncWriteExt::close()`]
584/// simply flushes. If you want to shutdown a TCP or Unix socket, use
585/// [`Shutdown`][`std::net::Shutdown`].
586///
587/// # Examples
588///
589/// Connect to a server and echo incoming messages back to the server:
590///
591/// ```no_run
592/// use async_io::Async;
593/// use futures_lite::io;
594/// use std::net::TcpStream;
595///
596/// # futures_lite::future::block_on(async {
597/// // Connect to a local server.
598/// let stream = Async::<TcpStream>::connect(([127, 0, 0, 1], 8000)).await?;
599///
600/// // Echo all messages from the read side of the stream into the write side.
601/// io::copy(&stream, &stream).await?;
602/// # std::io::Result::Ok(()) });
603/// ```
604///
605/// You can use either predefined async methods or wrap blocking I/O operations in
606/// [`Async::read_with()`], [`Async::read_with_mut()`], [`Async::write_with()`], and
607/// [`Async::write_with_mut()`]:
608///
609/// ```no_run
610/// use async_io::Async;
611/// use std::net::TcpListener;
612///
613/// # futures_lite::future::block_on(async {
614/// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
615///
616/// // These two lines are equivalent:
617/// let (stream, addr) = listener.accept().await?;
618/// let (stream, addr) = listener.read_with(|inner| inner.accept()).await?;
619/// # std::io::Result::Ok(()) });
620/// ```
621#[derive(Debug)]
622pub struct Async<T> {
623 /// A source registered in the reactor.
624 source: Arc<Source>,
625
626 /// The inner I/O handle.
627 io: Option<T>,
628}
629
630impl<T> Unpin for Async<T> {}
631
632#[cfg(unix)]
633impl<T: AsFd> Async<T> {
634 /// Creates an async I/O handle.
635 ///
636 /// This method will put the handle in non-blocking mode and register it in
637 /// [epoll]/[kqueue]/[event ports]/[IOCP].
638 ///
639 /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
640 /// `AsSocket`.
641 ///
642 /// [epoll]: https://en.wikipedia.org/wiki/Epoll
643 /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
644 /// [event ports]: https://illumos.org/man/port_create
645 /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
646 ///
647 /// # Examples
648 ///
649 /// ```
650 /// use async_io::Async;
651 /// use std::net::{SocketAddr, TcpListener};
652 ///
653 /// # futures_lite::future::block_on(async {
654 /// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?;
655 /// let listener = Async::new(listener)?;
656 /// # std::io::Result::Ok(()) });
657 /// ```
658 pub fn new(io: T) -> io::Result<Async<T>> {
659 // Put the file descriptor in non-blocking mode.
660 set_nonblocking(io.as_fd())?;
661
662 Self::new_nonblocking(io)
663 }
664
665 /// Creates an async I/O handle without setting it to non-blocking mode.
666 ///
667 /// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP].
668 ///
669 /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
670 /// `AsSocket`.
671 ///
672 /// [epoll]: https://en.wikipedia.org/wiki/Epoll
673 /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
674 /// [event ports]: https://illumos.org/man/port_create
675 /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
676 ///
677 /// # Caveats
678 ///
679 /// The caller should ensure that the handle is set to non-blocking mode or that it is okay if
680 /// it is not set. If not set to non-blocking mode, I/O operations may block the current thread
681 /// and cause a deadlock in an asynchronous context.
682 pub fn new_nonblocking(io: T) -> io::Result<Async<T>> {
683 // SAFETY: It is impossible to drop the I/O source while it is registered through
684 // this type.
685 let registration = unsafe { Registration::new(io.as_fd()) };
686
687 Ok(Async {
688 source: Reactor::get().insert_io(registration)?,
689 io: Some(io),
690 })
691 }
692}
693
694#[cfg(unix)]
695impl<T: AsRawFd> AsRawFd for Async<T> {
696 fn as_raw_fd(&self) -> RawFd {
697 self.get_ref().as_raw_fd()
698 }
699}
700
701#[cfg(unix)]
702impl<T: AsFd> AsFd for Async<T> {
703 fn as_fd(&self) -> BorrowedFd<'_> {
704 self.get_ref().as_fd()
705 }
706}
707
708#[cfg(unix)]
709impl<T: AsFd + From<OwnedFd>> TryFrom<OwnedFd> for Async<T> {
710 type Error = io::Error;
711
712 fn try_from(value: OwnedFd) -> Result<Self, Self::Error> {
713 Async::new(value.into())
714 }
715}
716
717#[cfg(unix)]
718impl<T: Into<OwnedFd>> TryFrom<Async<T>> for OwnedFd {
719 type Error = io::Error;
720
721 fn try_from(value: Async<T>) -> Result<Self, Self::Error> {
722 value.into_inner().map(Into::into)
723 }
724}
725
726#[cfg(windows)]
727impl<T: AsSocket> Async<T> {
728 /// Creates an async I/O handle.
729 ///
730 /// This method will put the handle in non-blocking mode and register it in
731 /// [epoll]/[kqueue]/[event ports]/[IOCP].
732 ///
733 /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
734 /// `AsSocket`.
735 ///
736 /// [epoll]: https://en.wikipedia.org/wiki/Epoll
737 /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
738 /// [event ports]: https://illumos.org/man/port_create
739 /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
740 ///
741 /// # Examples
742 ///
743 /// ```
744 /// use async_io::Async;
745 /// use std::net::{SocketAddr, TcpListener};
746 ///
747 /// # futures_lite::future::block_on(async {
748 /// let listener = TcpListener::bind(SocketAddr::from(([127, 0, 0, 1], 0)))?;
749 /// let listener = Async::new(listener)?;
750 /// # std::io::Result::Ok(()) });
751 /// ```
752 pub fn new(io: T) -> io::Result<Async<T>> {
753 // Put the socket in non-blocking mode.
754 set_nonblocking(io.as_socket())?;
755
756 Self::new_nonblocking(io)
757 }
758
759 /// Creates an async I/O handle without setting it to non-blocking mode.
760 ///
761 /// This method will register the handle in [epoll]/[kqueue]/[event ports]/[IOCP].
762 ///
763 /// On Unix systems, the handle must implement `AsFd`, while on Windows it must implement
764 /// `AsSocket`.
765 ///
766 /// [epoll]: https://en.wikipedia.org/wiki/Epoll
767 /// [kqueue]: https://en.wikipedia.org/wiki/Kqueue
768 /// [event ports]: https://illumos.org/man/port_create
769 /// [IOCP]: https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
770 ///
771 /// # Caveats
772 ///
773 /// The caller should ensure that the handle is set to non-blocking mode or that it is okay if
774 /// it is not set. If not set to non-blocking mode, I/O operations may block the current thread
775 /// and cause a deadlock in an asynchronous context.
776 pub fn new_nonblocking(io: T) -> io::Result<Async<T>> {
777 // Create the registration.
778 //
779 // SAFETY: It is impossible to drop the I/O source while it is registered through
780 // this type.
781 let registration = unsafe { Registration::new(io.as_socket()) };
782
783 Ok(Async {
784 source: Reactor::get().insert_io(registration)?,
785 io: Some(io),
786 })
787 }
788}
789
790#[cfg(windows)]
791impl<T: AsRawSocket> AsRawSocket for Async<T> {
792 fn as_raw_socket(&self) -> RawSocket {
793 self.get_ref().as_raw_socket()
794 }
795}
796
797#[cfg(windows)]
798impl<T: AsSocket> AsSocket for Async<T> {
799 fn as_socket(&self) -> BorrowedSocket<'_> {
800 self.get_ref().as_socket()
801 }
802}
803
804#[cfg(windows)]
805impl<T: AsSocket + From<OwnedSocket>> TryFrom<OwnedSocket> for Async<T> {
806 type Error = io::Error;
807
808 fn try_from(value: OwnedSocket) -> Result<Self, Self::Error> {
809 Async::new(value.into())
810 }
811}
812
813#[cfg(windows)]
814impl<T: Into<OwnedSocket>> TryFrom<Async<T>> for OwnedSocket {
815 type Error = io::Error;
816
817 fn try_from(value: Async<T>) -> Result<Self, Self::Error> {
818 value.into_inner().map(Into::into)
819 }
820}
821
822impl<T> Async<T> {
823 /// Gets a reference to the inner I/O handle.
824 ///
825 /// # Examples
826 ///
827 /// ```
828 /// use async_io::Async;
829 /// use std::net::TcpListener;
830 ///
831 /// # futures_lite::future::block_on(async {
832 /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
833 /// let inner = listener.get_ref();
834 /// # std::io::Result::Ok(()) });
835 /// ```
836 pub fn get_ref(&self) -> &T {
837 self.io.as_ref().unwrap()
838 }
839
840 /// Gets a mutable reference to the inner I/O handle.
841 ///
842 /// # Safety
843 ///
844 /// The underlying I/O source must not be dropped using this function.
845 ///
846 /// # Examples
847 ///
848 /// ```
849 /// use async_io::Async;
850 /// use std::net::TcpListener;
851 ///
852 /// # futures_lite::future::block_on(async {
853 /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
854 /// let inner = unsafe { listener.get_mut() };
855 /// # std::io::Result::Ok(()) });
856 /// ```
857 pub unsafe fn get_mut(&mut self) -> &mut T {
858 self.io.as_mut().unwrap()
859 }
860
861 /// Unwraps the inner I/O handle.
862 ///
863 /// This method will **not** put the I/O handle back into blocking mode.
864 ///
865 /// # Examples
866 ///
867 /// ```
868 /// use async_io::Async;
869 /// use std::net::TcpListener;
870 ///
871 /// # futures_lite::future::block_on(async {
872 /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
873 /// let inner = listener.into_inner()?;
874 ///
875 /// // Put the listener back into blocking mode.
876 /// inner.set_nonblocking(false)?;
877 /// # std::io::Result::Ok(()) });
878 /// ```
879 pub fn into_inner(mut self) -> io::Result<T> {
880 let io = self.io.take().unwrap();
881 Reactor::get().remove_io(&self.source)?;
882 Ok(io)
883 }
884
885 /// Waits until the I/O handle is readable.
886 ///
887 /// This method completes when a read operation on this I/O handle wouldn't block.
888 ///
889 /// # Examples
890 ///
891 /// ```no_run
892 /// use async_io::Async;
893 /// use std::net::TcpListener;
894 ///
895 /// # futures_lite::future::block_on(async {
896 /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
897 ///
898 /// // Wait until a client can be accepted.
899 /// listener.readable().await?;
900 /// # std::io::Result::Ok(()) });
901 /// ```
902 pub fn readable(&self) -> Readable<'_, T> {
903 Source::readable(self)
904 }
905
906 /// Waits until the I/O handle is readable.
907 ///
908 /// This method completes when a read operation on this I/O handle wouldn't block.
909 pub fn readable_owned(self: Arc<Self>) -> ReadableOwned<T> {
910 Source::readable_owned(self)
911 }
912
913 /// Waits until the I/O handle is writable.
914 ///
915 /// This method completes when a write operation on this I/O handle wouldn't block.
916 ///
917 /// # Examples
918 ///
919 /// ```
920 /// use async_io::Async;
921 /// use std::net::{TcpStream, ToSocketAddrs};
922 ///
923 /// # futures_lite::future::block_on(async {
924 /// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
925 /// let stream = Async::<TcpStream>::connect(addr).await?;
926 ///
927 /// // Wait until the stream is writable.
928 /// stream.writable().await?;
929 /// # std::io::Result::Ok(()) });
930 /// ```
931 pub fn writable(&self) -> Writable<'_, T> {
932 Source::writable(self)
933 }
934
935 /// Waits until the I/O handle is writable.
936 ///
937 /// This method completes when a write operation on this I/O handle wouldn't block.
938 pub fn writable_owned(self: Arc<Self>) -> WritableOwned<T> {
939 Source::writable_owned(self)
940 }
941
942 /// Polls the I/O handle for readability.
943 ///
944 /// When this method returns [`Poll::Ready`], that means the OS has delivered an event
945 /// indicating readability since the last time this task has called the method and received
946 /// [`Poll::Pending`].
947 ///
948 /// # Caveats
949 ///
950 /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
951 /// will just keep waking each other in turn, thus wasting CPU time.
952 ///
953 /// Note that the [`AsyncRead`] implementation for [`Async`] also uses this method.
954 ///
955 /// # Examples
956 ///
957 /// ```no_run
958 /// use async_io::Async;
959 /// use futures_lite::future;
960 /// use std::net::TcpListener;
961 ///
962 /// # futures_lite::future::block_on(async {
963 /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
964 ///
965 /// // Wait until a client can be accepted.
966 /// future::poll_fn(|cx| listener.poll_readable(cx)).await?;
967 /// # std::io::Result::Ok(()) });
968 /// ```
969 pub fn poll_readable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
970 self.source.poll_readable(cx)
971 }
972
973 /// Polls the I/O handle for writability.
974 ///
975 /// When this method returns [`Poll::Ready`], that means the OS has delivered an event
976 /// indicating writability since the last time this task has called the method and received
977 /// [`Poll::Pending`].
978 ///
979 /// # Caveats
980 ///
981 /// Two different tasks should not call this method concurrently. Otherwise, conflicting tasks
982 /// will just keep waking each other in turn, thus wasting CPU time.
983 ///
984 /// Note that the [`AsyncWrite`] implementation for [`Async`] also uses this method.
985 ///
986 /// # Examples
987 ///
988 /// ```
989 /// use async_io::Async;
990 /// use futures_lite::future;
991 /// use std::net::{TcpStream, ToSocketAddrs};
992 ///
993 /// # futures_lite::future::block_on(async {
994 /// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
995 /// let stream = Async::<TcpStream>::connect(addr).await?;
996 ///
997 /// // Wait until the stream is writable.
998 /// future::poll_fn(|cx| stream.poll_writable(cx)).await?;
999 /// # std::io::Result::Ok(()) });
1000 /// ```
1001 pub fn poll_writable(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1002 self.source.poll_writable(cx)
1003 }
1004
1005 /// Performs a read operation asynchronously.
1006 ///
1007 /// The I/O handle is registered in the reactor and put in non-blocking mode. This method
1008 /// invokes the `op` closure in a loop until it succeeds or returns an error other than
1009 /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
1010 /// sends a notification that the I/O handle is readable.
1011 ///
1012 /// The closure receives a shared reference to the I/O handle.
1013 ///
1014 /// # Examples
1015 ///
1016 /// ```no_run
1017 /// use async_io::Async;
1018 /// use std::net::TcpListener;
1019 ///
1020 /// # futures_lite::future::block_on(async {
1021 /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
1022 ///
1023 /// // Accept a new client asynchronously.
1024 /// let (stream, addr) = listener.read_with(|l| l.accept()).await?;
1025 /// # std::io::Result::Ok(()) });
1026 /// ```
1027 pub async fn read_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> {
1028 let mut op = op;
1029 loop {
1030 match op(self.get_ref()) {
1031 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1032 res => return res,
1033 }
1034 optimistic(self.readable()).await?;
1035 }
1036 }
1037
1038 /// Performs a read operation asynchronously.
1039 ///
1040 /// The I/O handle is registered in the reactor and put in non-blocking mode. This method
1041 /// invokes the `op` closure in a loop until it succeeds or returns an error other than
1042 /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
1043 /// sends a notification that the I/O handle is readable.
1044 ///
1045 /// The closure receives a mutable reference to the I/O handle.
1046 ///
1047 /// # Safety
1048 ///
1049 /// In the closure, the underlying I/O source must not be dropped.
1050 ///
1051 /// # Examples
1052 ///
1053 /// ```no_run
1054 /// use async_io::Async;
1055 /// use std::net::TcpListener;
1056 ///
1057 /// # futures_lite::future::block_on(async {
1058 /// let mut listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
1059 ///
1060 /// // Accept a new client asynchronously.
1061 /// let (stream, addr) = unsafe { listener.read_with_mut(|l| l.accept()).await? };
1062 /// # std::io::Result::Ok(()) });
1063 /// ```
1064 pub async unsafe fn read_with_mut<R>(
1065 &mut self,
1066 op: impl FnMut(&mut T) -> io::Result<R>,
1067 ) -> io::Result<R> {
1068 let mut op = op;
1069 loop {
1070 match op(self.get_mut()) {
1071 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1072 res => return res,
1073 }
1074 optimistic(self.readable()).await?;
1075 }
1076 }
1077
1078 /// Performs a write operation asynchronously.
1079 ///
1080 /// The I/O handle is registered in the reactor and put in non-blocking mode. This method
1081 /// invokes the `op` closure in a loop until it succeeds or returns an error other than
1082 /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
1083 /// sends a notification that the I/O handle is writable.
1084 ///
1085 /// The closure receives a shared reference to the I/O handle.
1086 ///
1087 /// # Examples
1088 ///
1089 /// ```no_run
1090 /// use async_io::Async;
1091 /// use std::net::UdpSocket;
1092 ///
1093 /// # futures_lite::future::block_on(async {
1094 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1095 /// socket.get_ref().connect("127.0.0.1:9000")?;
1096 ///
1097 /// let msg = b"hello";
1098 /// let len = socket.write_with(|s| s.send(msg)).await?;
1099 /// # std::io::Result::Ok(()) });
1100 /// ```
1101 pub async fn write_with<R>(&self, op: impl FnMut(&T) -> io::Result<R>) -> io::Result<R> {
1102 let mut op = op;
1103 loop {
1104 match op(self.get_ref()) {
1105 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1106 res => return res,
1107 }
1108 optimistic(self.writable()).await?;
1109 }
1110 }
1111
1112 /// Performs a write operation asynchronously.
1113 ///
1114 /// The I/O handle is registered in the reactor and put in non-blocking mode. This method
1115 /// invokes the `op` closure in a loop until it succeeds or returns an error other than
1116 /// [`io::ErrorKind::WouldBlock`]. In between iterations of the loop, it waits until the OS
1117 /// sends a notification that the I/O handle is writable.
1118 ///
1119 /// # Safety
1120 ///
1121 /// The closure receives a mutable reference to the I/O handle. In the closure, the underlying
1122 /// I/O source must not be dropped.
1123 ///
1124 /// # Examples
1125 ///
1126 /// ```no_run
1127 /// use async_io::Async;
1128 /// use std::net::UdpSocket;
1129 ///
1130 /// # futures_lite::future::block_on(async {
1131 /// let mut socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1132 /// socket.get_ref().connect("127.0.0.1:9000")?;
1133 ///
1134 /// let msg = b"hello";
1135 /// let len = unsafe { socket.write_with_mut(|s| s.send(msg)).await? };
1136 /// # std::io::Result::Ok(()) });
1137 /// ```
1138 pub async unsafe fn write_with_mut<R>(
1139 &mut self,
1140 op: impl FnMut(&mut T) -> io::Result<R>,
1141 ) -> io::Result<R> {
1142 let mut op = op;
1143 loop {
1144 match op(self.get_mut()) {
1145 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1146 res => return res,
1147 }
1148 optimistic(self.writable()).await?;
1149 }
1150 }
1151}
1152
1153impl<T> AsRef<T> for Async<T> {
1154 fn as_ref(&self) -> &T {
1155 self.get_ref()
1156 }
1157}
1158
1159impl<T> Drop for Async<T> {
1160 fn drop(&mut self) {
1161 if self.io.is_some() {
1162 // Deregister and ignore errors because destructors should not panic.
1163 Reactor::get().remove_io(&self.source).ok();
1164
1165 // Drop the I/O handle to close it.
1166 self.io.take();
1167 }
1168 }
1169}
1170
1171/// Types whose I/O trait implementations do not drop the underlying I/O source.
1172///
1173/// The resource contained inside of the [`Async`] cannot be invalidated. This invalidation can
1174/// happen if the inner resource (the [`TcpStream`], [`UnixListener`] or other `T`) is moved out
1175/// and dropped before the [`Async`]. Because of this, functions that grant mutable access to
1176/// the inner type are unsafe, as there is no way to guarantee that the source won't be dropped
1177/// and a dangling handle won't be left behind.
1178///
1179/// Unfortunately this extends to implementations of [`Read`] and [`Write`]. Since methods on those
1180/// traits take `&mut`, there is no guarantee that the implementor of those traits won't move the
1181/// source out while the method is being run.
1182///
1183/// This trait is an antidote to this predicament. By implementing this trait, the user pledges
1184/// that using any I/O traits won't destroy the source. This way, [`Async`] can implement the
1185/// `async` version of these I/O traits, like [`AsyncRead`] and [`AsyncWrite`].
1186///
1187/// # Safety
1188///
1189/// Any I/O trait implementations for this type must not drop the underlying I/O source. Traits
1190/// affected by this trait include [`Read`], [`Write`], [`Seek`] and [`BufRead`].
1191///
1192/// This trait is implemented by default on top of `libstd` types. In addition, it is implemented
1193/// for immutable reference types, as it is impossible to invalidate any outstanding references
1194/// while holding an immutable reference, even with interior mutability. As Rust's current pinning
1195/// system relies on similar guarantees, I believe that this approach is robust.
1196///
1197/// [`BufRead`]: https://doc.rust-lang.org/std/io/trait.BufRead.html
1198/// [`Read`]: https://doc.rust-lang.org/std/io/trait.Read.html
1199/// [`Seek`]: https://doc.rust-lang.org/std/io/trait.Seek.html
1200/// [`Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
1201///
1202/// [`AsyncRead`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncRead.html
1203/// [`AsyncWrite`]: https://docs.rs/futures-io/latest/futures_io/trait.AsyncWrite.html
1204pub unsafe trait IoSafe {}
1205
1206/// Reference types can't be mutated.
1207///
1208/// The worst thing that can happen is that external state is used to change what kind of pointer
1209/// `as_fd()` returns. For instance:
1210///
1211/// ```
1212/// # #[cfg(unix)] {
1213/// use std::cell::Cell;
1214/// use std::net::TcpStream;
1215/// use std::os::unix::io::{AsFd, BorrowedFd};
1216///
1217/// struct Bar {
1218/// flag: Cell<bool>,
1219/// a: TcpStream,
1220/// b: TcpStream
1221/// }
1222///
1223/// impl AsFd for Bar {
1224/// fn as_fd(&self) -> BorrowedFd<'_> {
1225/// if self.flag.replace(!self.flag.get()) {
1226/// self.a.as_fd()
1227/// } else {
1228/// self.b.as_fd()
1229/// }
1230/// }
1231/// }
1232/// # }
1233/// ```
1234///
1235/// We solve this problem by only calling `as_fd()` once to get the original source. Implementations
1236/// like this are considered buggy (but not unsound) and are thus not really supported by `async-io`.
1237unsafe impl<T: ?Sized> IoSafe for &T {}
1238
1239// Can be implemented on top of libstd types.
1240unsafe impl IoSafe for std::fs::File {}
1241unsafe impl IoSafe for std::io::Stderr {}
1242unsafe impl IoSafe for std::io::Stdin {}
1243unsafe impl IoSafe for std::io::Stdout {}
1244unsafe impl IoSafe for std::io::StderrLock<'_> {}
1245unsafe impl IoSafe for std::io::StdinLock<'_> {}
1246unsafe impl IoSafe for std::io::StdoutLock<'_> {}
1247unsafe impl IoSafe for std::net::TcpStream {}
1248unsafe impl IoSafe for std::process::ChildStdin {}
1249unsafe impl IoSafe for std::process::ChildStdout {}
1250unsafe impl IoSafe for std::process::ChildStderr {}
1251
1252#[cfg(unix)]
1253unsafe impl IoSafe for std::os::unix::net::UnixStream {}
1254
1255unsafe impl<T: IoSafe + Read> IoSafe for std::io::BufReader<T> {}
1256unsafe impl<T: IoSafe + Write> IoSafe for std::io::BufWriter<T> {}
1257unsafe impl<T: IoSafe + Write> IoSafe for std::io::LineWriter<T> {}
1258unsafe impl<T: IoSafe + ?Sized> IoSafe for &mut T {}
1259unsafe impl<T: IoSafe + ?Sized> IoSafe for Box<T> {}
1260unsafe impl<T: Clone + IoSafe> IoSafe for std::borrow::Cow<'_, T> {}
1261
1262impl<T: IoSafe + Read> AsyncRead for Async<T> {
1263 fn poll_read(
1264 mut self: Pin<&mut Self>,
1265 cx: &mut Context<'_>,
1266 buf: &mut [u8],
1267 ) -> Poll<io::Result<usize>> {
1268 loop {
1269 match unsafe { (*self).get_mut() }.read(buf) {
1270 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1271 res => return Poll::Ready(res),
1272 }
1273 ready!(self.poll_readable(cx))?;
1274 }
1275 }
1276
1277 fn poll_read_vectored(
1278 mut self: Pin<&mut Self>,
1279 cx: &mut Context<'_>,
1280 bufs: &mut [IoSliceMut<'_>],
1281 ) -> Poll<io::Result<usize>> {
1282 loop {
1283 match unsafe { (*self).get_mut() }.read_vectored(bufs) {
1284 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1285 res => return Poll::Ready(res),
1286 }
1287 ready!(self.poll_readable(cx))?;
1288 }
1289 }
1290}
1291
1292// Since this is through a reference, we can't mutate the inner I/O source.
1293// Therefore this is safe!
1294impl<T> AsyncRead for &Async<T>
1295where
1296 for<'a> &'a T: Read,
1297{
1298 fn poll_read(
1299 self: Pin<&mut Self>,
1300 cx: &mut Context<'_>,
1301 buf: &mut [u8],
1302 ) -> Poll<io::Result<usize>> {
1303 loop {
1304 match (*self).get_ref().read(buf) {
1305 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1306 res => return Poll::Ready(res),
1307 }
1308 ready!(self.poll_readable(cx))?;
1309 }
1310 }
1311
1312 fn poll_read_vectored(
1313 self: Pin<&mut Self>,
1314 cx: &mut Context<'_>,
1315 bufs: &mut [IoSliceMut<'_>],
1316 ) -> Poll<io::Result<usize>> {
1317 loop {
1318 match (*self).get_ref().read_vectored(bufs) {
1319 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1320 res => return Poll::Ready(res),
1321 }
1322 ready!(self.poll_readable(cx))?;
1323 }
1324 }
1325}
1326
1327impl<T: IoSafe + Write> AsyncWrite for Async<T> {
1328 fn poll_write(
1329 mut self: Pin<&mut Self>,
1330 cx: &mut Context<'_>,
1331 buf: &[u8],
1332 ) -> Poll<io::Result<usize>> {
1333 loop {
1334 match unsafe { (*self).get_mut() }.write(buf) {
1335 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1336 res => return Poll::Ready(res),
1337 }
1338 ready!(self.poll_writable(cx))?;
1339 }
1340 }
1341
1342 fn poll_write_vectored(
1343 mut self: Pin<&mut Self>,
1344 cx: &mut Context<'_>,
1345 bufs: &[IoSlice<'_>],
1346 ) -> Poll<io::Result<usize>> {
1347 loop {
1348 match unsafe { (*self).get_mut() }.write_vectored(bufs) {
1349 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1350 res => return Poll::Ready(res),
1351 }
1352 ready!(self.poll_writable(cx))?;
1353 }
1354 }
1355
1356 fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1357 loop {
1358 match unsafe { (*self).get_mut() }.flush() {
1359 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1360 res => return Poll::Ready(res),
1361 }
1362 ready!(self.poll_writable(cx))?;
1363 }
1364 }
1365
1366 fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1367 self.poll_flush(cx)
1368 }
1369}
1370
1371impl<T> AsyncWrite for &Async<T>
1372where
1373 for<'a> &'a T: Write,
1374{
1375 fn poll_write(
1376 self: Pin<&mut Self>,
1377 cx: &mut Context<'_>,
1378 buf: &[u8],
1379 ) -> Poll<io::Result<usize>> {
1380 loop {
1381 match (*self).get_ref().write(buf) {
1382 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1383 res => return Poll::Ready(res),
1384 }
1385 ready!(self.poll_writable(cx))?;
1386 }
1387 }
1388
1389 fn poll_write_vectored(
1390 self: Pin<&mut Self>,
1391 cx: &mut Context<'_>,
1392 bufs: &[IoSlice<'_>],
1393 ) -> Poll<io::Result<usize>> {
1394 loop {
1395 match (*self).get_ref().write_vectored(bufs) {
1396 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1397 res => return Poll::Ready(res),
1398 }
1399 ready!(self.poll_writable(cx))?;
1400 }
1401 }
1402
1403 fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1404 loop {
1405 match (*self).get_ref().flush() {
1406 Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
1407 res => return Poll::Ready(res),
1408 }
1409 ready!(self.poll_writable(cx))?;
1410 }
1411 }
1412
1413 fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
1414 self.poll_flush(cx)
1415 }
1416}
1417
1418impl Async<TcpListener> {
1419 /// Creates a TCP listener bound to the specified address.
1420 ///
1421 /// Binding with port number 0 will request an available port from the OS.
1422 ///
1423 /// # Examples
1424 ///
1425 /// ```
1426 /// use async_io::Async;
1427 /// use std::net::TcpListener;
1428 ///
1429 /// # futures_lite::future::block_on(async {
1430 /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 0))?;
1431 /// println!("Listening on {}", listener.get_ref().local_addr()?);
1432 /// # std::io::Result::Ok(()) });
1433 /// ```
1434 pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpListener>> {
1435 let addr = addr.into();
1436 Async::new(TcpListener::bind(addr)?)
1437 }
1438
1439 /// Accepts a new incoming TCP connection.
1440 ///
1441 /// When a connection is established, it will be returned as a TCP stream together with its
1442 /// remote address.
1443 ///
1444 /// # Examples
1445 ///
1446 /// ```no_run
1447 /// use async_io::Async;
1448 /// use std::net::TcpListener;
1449 ///
1450 /// # futures_lite::future::block_on(async {
1451 /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?;
1452 /// let (stream, addr) = listener.accept().await?;
1453 /// println!("Accepted client: {}", addr);
1454 /// # std::io::Result::Ok(()) });
1455 /// ```
1456 pub async fn accept(&self) -> io::Result<(Async<TcpStream>, SocketAddr)> {
1457 let (stream, addr) = self.read_with(|io| io.accept()).await?;
1458 Ok((Async::new(stream)?, addr))
1459 }
1460
1461 /// Returns a stream of incoming TCP connections.
1462 ///
1463 /// The stream is infinite, i.e. it never stops with a [`None`].
1464 ///
1465 /// # Examples
1466 ///
1467 /// ```no_run
1468 /// use async_io::Async;
1469 /// use futures_lite::{pin, stream::StreamExt};
1470 /// use std::net::TcpListener;
1471 ///
1472 /// # futures_lite::future::block_on(async {
1473 /// let listener = Async::<TcpListener>::bind(([127, 0, 0, 1], 8000))?;
1474 /// let incoming = listener.incoming();
1475 /// pin!(incoming);
1476 ///
1477 /// while let Some(stream) = incoming.next().await {
1478 /// let stream = stream?;
1479 /// println!("Accepted client: {}", stream.get_ref().peer_addr()?);
1480 /// }
1481 /// # std::io::Result::Ok(()) });
1482 /// ```
1483 pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<TcpStream>>> + Send + '_ {
1484 stream::unfold(self, |listener| async move {
1485 let res = listener.accept().await.map(|(stream, _)| stream);
1486 Some((res, listener))
1487 })
1488 }
1489}
1490
1491impl TryFrom<std::net::TcpListener> for Async<std::net::TcpListener> {
1492 type Error = io::Error;
1493
1494 fn try_from(listener: std::net::TcpListener) -> io::Result<Self> {
1495 Async::new(listener)
1496 }
1497}
1498
1499impl Async<TcpStream> {
1500 /// Creates a TCP connection to the specified address.
1501 ///
1502 /// # Examples
1503 ///
1504 /// ```
1505 /// use async_io::Async;
1506 /// use std::net::{TcpStream, ToSocketAddrs};
1507 ///
1508 /// # futures_lite::future::block_on(async {
1509 /// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
1510 /// let stream = Async::<TcpStream>::connect(addr).await?;
1511 /// # std::io::Result::Ok(()) });
1512 /// ```
1513 pub async fn connect<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<TcpStream>> {
1514 // Figure out how to handle this address.
1515 let addr = addr.into();
1516 let (domain, sock_addr) = match addr {
1517 SocketAddr::V4(v4) => (rn::AddressFamily::INET, v4.as_any()),
1518 SocketAddr::V6(v6) => (rn::AddressFamily::INET6, v6.as_any()),
1519 };
1520
1521 // Begin async connect.
1522 let socket = connect(sock_addr, domain, Some(rn::ipproto::TCP))?;
1523 // Use new_nonblocking because connect already sets socket to non-blocking mode.
1524 let stream = Async::new_nonblocking(TcpStream::from(socket))?;
1525
1526 // The stream becomes writable when connected.
1527 stream.writable().await?;
1528
1529 // Check if there was an error while connecting.
1530 match stream.get_ref().take_error()? {
1531 None => Ok(stream),
1532 Some(err) => Err(err),
1533 }
1534 }
1535
1536 /// Reads data from the stream without removing it from the buffer.
1537 ///
1538 /// Returns the number of bytes read. Successive calls of this method read the same data.
1539 ///
1540 /// # Examples
1541 ///
1542 /// ```
1543 /// use async_io::Async;
1544 /// use futures_lite::{io::AsyncWriteExt, stream::StreamExt};
1545 /// use std::net::{TcpStream, ToSocketAddrs};
1546 ///
1547 /// # futures_lite::future::block_on(async {
1548 /// let addr = "example.com:80".to_socket_addrs()?.next().unwrap();
1549 /// let mut stream = Async::<TcpStream>::connect(addr).await?;
1550 ///
1551 /// stream
1552 /// .write_all(b"GET / HTTP/1.1\r\nHost: example.com\r\n\r\n")
1553 /// .await?;
1554 ///
1555 /// let mut buf = [0u8; 1024];
1556 /// let len = stream.peek(&mut buf).await?;
1557 /// # std::io::Result::Ok(()) });
1558 /// ```
1559 pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
1560 self.read_with(|io| io.peek(buf)).await
1561 }
1562}
1563
1564impl TryFrom<std::net::TcpStream> for Async<std::net::TcpStream> {
1565 type Error = io::Error;
1566
1567 fn try_from(stream: std::net::TcpStream) -> io::Result<Self> {
1568 Async::new(stream)
1569 }
1570}
1571
1572impl Async<UdpSocket> {
1573 /// Creates a UDP socket bound to the specified address.
1574 ///
1575 /// Binding with port number 0 will request an available port from the OS.
1576 ///
1577 /// # Examples
1578 ///
1579 /// ```
1580 /// use async_io::Async;
1581 /// use std::net::UdpSocket;
1582 ///
1583 /// # futures_lite::future::block_on(async {
1584 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?;
1585 /// println!("Bound to {}", socket.get_ref().local_addr()?);
1586 /// # std::io::Result::Ok(()) });
1587 /// ```
1588 pub fn bind<A: Into<SocketAddr>>(addr: A) -> io::Result<Async<UdpSocket>> {
1589 let addr = addr.into();
1590 Async::new(UdpSocket::bind(addr)?)
1591 }
1592
1593 /// Receives a single datagram message.
1594 ///
1595 /// Returns the number of bytes read and the address the message came from.
1596 ///
1597 /// This method must be called with a valid byte slice of sufficient size to hold the message.
1598 /// If the message is too long to fit, excess bytes may get discarded.
1599 ///
1600 /// # Examples
1601 ///
1602 /// ```no_run
1603 /// use async_io::Async;
1604 /// use std::net::UdpSocket;
1605 ///
1606 /// # futures_lite::future::block_on(async {
1607 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1608 ///
1609 /// let mut buf = [0u8; 1024];
1610 /// let (len, addr) = socket.recv_from(&mut buf).await?;
1611 /// # std::io::Result::Ok(()) });
1612 /// ```
1613 pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
1614 self.read_with(|io| io.recv_from(buf)).await
1615 }
1616
1617 /// Receives a single datagram message without removing it from the queue.
1618 ///
1619 /// Returns the number of bytes read and the address the message came from.
1620 ///
1621 /// This method must be called with a valid byte slice of sufficient size to hold the message.
1622 /// If the message is too long to fit, excess bytes may get discarded.
1623 ///
1624 /// # Examples
1625 ///
1626 /// ```no_run
1627 /// use async_io::Async;
1628 /// use std::net::UdpSocket;
1629 ///
1630 /// # futures_lite::future::block_on(async {
1631 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1632 ///
1633 /// let mut buf = [0u8; 1024];
1634 /// let (len, addr) = socket.peek_from(&mut buf).await?;
1635 /// # std::io::Result::Ok(()) });
1636 /// ```
1637 pub async fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
1638 self.read_with(|io| io.peek_from(buf)).await
1639 }
1640
1641 /// Sends data to the specified address.
1642 ///
1643 /// Returns the number of bytes written.
1644 ///
1645 /// # Examples
1646 ///
1647 /// ```no_run
1648 /// use async_io::Async;
1649 /// use std::net::UdpSocket;
1650 ///
1651 /// # futures_lite::future::block_on(async {
1652 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 0))?;
1653 /// let addr = socket.get_ref().local_addr()?;
1654 ///
1655 /// let msg = b"hello";
1656 /// let len = socket.send_to(msg, addr).await?;
1657 /// # std::io::Result::Ok(()) });
1658 /// ```
1659 pub async fn send_to<A: Into<SocketAddr>>(&self, buf: &[u8], addr: A) -> io::Result<usize> {
1660 let addr = addr.into();
1661 self.write_with(|io| io.send_to(buf, addr)).await
1662 }
1663
1664 /// Receives a single datagram message from the connected peer.
1665 ///
1666 /// Returns the number of bytes read.
1667 ///
1668 /// This method must be called with a valid byte slice of sufficient size to hold the message.
1669 /// If the message is too long to fit, excess bytes may get discarded.
1670 ///
1671 /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address.
1672 /// This method will fail if the socket is not connected.
1673 ///
1674 /// # Examples
1675 ///
1676 /// ```no_run
1677 /// use async_io::Async;
1678 /// use std::net::UdpSocket;
1679 ///
1680 /// # futures_lite::future::block_on(async {
1681 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1682 /// socket.get_ref().connect("127.0.0.1:9000")?;
1683 ///
1684 /// let mut buf = [0u8; 1024];
1685 /// let len = socket.recv(&mut buf).await?;
1686 /// # std::io::Result::Ok(()) });
1687 /// ```
1688 pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
1689 self.read_with(|io| io.recv(buf)).await
1690 }
1691
1692 /// Receives a single datagram message from the connected peer without removing it from the
1693 /// queue.
1694 ///
1695 /// Returns the number of bytes read and the address the message came from.
1696 ///
1697 /// This method must be called with a valid byte slice of sufficient size to hold the message.
1698 /// If the message is too long to fit, excess bytes may get discarded.
1699 ///
1700 /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address.
1701 /// This method will fail if the socket is not connected.
1702 ///
1703 /// # Examples
1704 ///
1705 /// ```no_run
1706 /// use async_io::Async;
1707 /// use std::net::UdpSocket;
1708 ///
1709 /// # futures_lite::future::block_on(async {
1710 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1711 /// socket.get_ref().connect("127.0.0.1:9000")?;
1712 ///
1713 /// let mut buf = [0u8; 1024];
1714 /// let len = socket.peek(&mut buf).await?;
1715 /// # std::io::Result::Ok(()) });
1716 /// ```
1717 pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
1718 self.read_with(|io| io.peek(buf)).await
1719 }
1720
1721 /// Sends data to the connected peer.
1722 ///
1723 /// Returns the number of bytes written.
1724 ///
1725 /// The [`connect`][`UdpSocket::connect()`] method connects this socket to a remote address.
1726 /// This method will fail if the socket is not connected.
1727 ///
1728 /// # Examples
1729 ///
1730 /// ```no_run
1731 /// use async_io::Async;
1732 /// use std::net::UdpSocket;
1733 ///
1734 /// # futures_lite::future::block_on(async {
1735 /// let socket = Async::<UdpSocket>::bind(([127, 0, 0, 1], 8000))?;
1736 /// socket.get_ref().connect("127.0.0.1:9000")?;
1737 ///
1738 /// let msg = b"hello";
1739 /// let len = socket.send(msg).await?;
1740 /// # std::io::Result::Ok(()) });
1741 /// ```
1742 pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
1743 self.write_with(|io| io.send(buf)).await
1744 }
1745}
1746
1747impl TryFrom<std::net::UdpSocket> for Async<std::net::UdpSocket> {
1748 type Error = io::Error;
1749
1750 fn try_from(socket: std::net::UdpSocket) -> io::Result<Self> {
1751 Async::new(socket)
1752 }
1753}
1754
1755#[cfg(unix)]
1756impl Async<UnixListener> {
1757 /// Creates a UDS listener bound to the specified path.
1758 ///
1759 /// # Examples
1760 ///
1761 /// ```no_run
1762 /// use async_io::Async;
1763 /// use std::os::unix::net::UnixListener;
1764 ///
1765 /// # futures_lite::future::block_on(async {
1766 /// let listener = Async::<UnixListener>::bind("/tmp/socket")?;
1767 /// println!("Listening on {:?}", listener.get_ref().local_addr()?);
1768 /// # std::io::Result::Ok(()) });
1769 /// ```
1770 pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixListener>> {
1771 let path = path.as_ref().to_owned();
1772 Async::new(UnixListener::bind(path)?)
1773 }
1774
1775 /// Accepts a new incoming UDS stream connection.
1776 ///
1777 /// When a connection is established, it will be returned as a stream together with its remote
1778 /// address.
1779 ///
1780 /// # Examples
1781 ///
1782 /// ```no_run
1783 /// use async_io::Async;
1784 /// use std::os::unix::net::UnixListener;
1785 ///
1786 /// # futures_lite::future::block_on(async {
1787 /// let listener = Async::<UnixListener>::bind("/tmp/socket")?;
1788 /// let (stream, addr) = listener.accept().await?;
1789 /// println!("Accepted client: {:?}", addr);
1790 /// # std::io::Result::Ok(()) });
1791 /// ```
1792 pub async fn accept(&self) -> io::Result<(Async<UnixStream>, UnixSocketAddr)> {
1793 let (stream, addr) = self.read_with(|io| io.accept()).await?;
1794 Ok((Async::new(stream)?, addr))
1795 }
1796
1797 /// Returns a stream of incoming UDS connections.
1798 ///
1799 /// The stream is infinite, i.e. it never stops with a [`None`] item.
1800 ///
1801 /// # Examples
1802 ///
1803 /// ```no_run
1804 /// use async_io::Async;
1805 /// use futures_lite::{pin, stream::StreamExt};
1806 /// use std::os::unix::net::UnixListener;
1807 ///
1808 /// # futures_lite::future::block_on(async {
1809 /// let listener = Async::<UnixListener>::bind("/tmp/socket")?;
1810 /// let incoming = listener.incoming();
1811 /// pin!(incoming);
1812 ///
1813 /// while let Some(stream) = incoming.next().await {
1814 /// let stream = stream?;
1815 /// println!("Accepted client: {:?}", stream.get_ref().peer_addr()?);
1816 /// }
1817 /// # std::io::Result::Ok(()) });
1818 /// ```
1819 pub fn incoming(&self) -> impl Stream<Item = io::Result<Async<UnixStream>>> + Send + '_ {
1820 stream::unfold(self, |listener| async move {
1821 let res = listener.accept().await.map(|(stream, _)| stream);
1822 Some((res, listener))
1823 })
1824 }
1825}
1826
1827#[cfg(unix)]
1828impl TryFrom<std::os::unix::net::UnixListener> for Async<std::os::unix::net::UnixListener> {
1829 type Error = io::Error;
1830
1831 fn try_from(listener: std::os::unix::net::UnixListener) -> io::Result<Self> {
1832 Async::new(listener)
1833 }
1834}
1835
1836#[cfg(unix)]
1837impl Async<UnixStream> {
1838 /// Creates a UDS stream connected to the specified path.
1839 ///
1840 /// # Examples
1841 ///
1842 /// ```no_run
1843 /// use async_io::Async;
1844 /// use std::os::unix::net::UnixStream;
1845 ///
1846 /// # futures_lite::future::block_on(async {
1847 /// let stream = Async::<UnixStream>::connect("/tmp/socket").await?;
1848 /// # std::io::Result::Ok(()) });
1849 /// ```
1850 pub async fn connect<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixStream>> {
1851 let address = convert_path_to_socket_address(path.as_ref())?;
1852
1853 // Begin async connect.
1854 let socket = connect(address.into(), rn::AddressFamily::UNIX, None)?;
1855 // Use new_nonblocking because connect already sets socket to non-blocking mode.
1856 let stream = Async::new_nonblocking(UnixStream::from(socket))?;
1857
1858 // The stream becomes writable when connected.
1859 stream.writable().await?;
1860
1861 // On Linux, it appears the socket may become writable even when connecting fails, so we
1862 // must do an extra check here and see if the peer address is retrievable.
1863 stream.get_ref().peer_addr()?;
1864 Ok(stream)
1865 }
1866
1867 /// Creates an unnamed pair of connected UDS stream sockets.
1868 ///
1869 /// # Examples
1870 ///
1871 /// ```no_run
1872 /// use async_io::Async;
1873 /// use std::os::unix::net::UnixStream;
1874 ///
1875 /// # futures_lite::future::block_on(async {
1876 /// let (stream1, stream2) = Async::<UnixStream>::pair()?;
1877 /// # std::io::Result::Ok(()) });
1878 /// ```
1879 pub fn pair() -> io::Result<(Async<UnixStream>, Async<UnixStream>)> {
1880 let (stream1, stream2) = UnixStream::pair()?;
1881 Ok((Async::new(stream1)?, Async::new(stream2)?))
1882 }
1883}
1884
1885#[cfg(unix)]
1886impl TryFrom<std::os::unix::net::UnixStream> for Async<std::os::unix::net::UnixStream> {
1887 type Error = io::Error;
1888
1889 fn try_from(stream: std::os::unix::net::UnixStream) -> io::Result<Self> {
1890 Async::new(stream)
1891 }
1892}
1893
1894#[cfg(unix)]
1895impl Async<UnixDatagram> {
1896 /// Creates a UDS datagram socket bound to the specified path.
1897 ///
1898 /// # Examples
1899 ///
1900 /// ```no_run
1901 /// use async_io::Async;
1902 /// use std::os::unix::net::UnixDatagram;
1903 ///
1904 /// # futures_lite::future::block_on(async {
1905 /// let socket = Async::<UnixDatagram>::bind("/tmp/socket")?;
1906 /// # std::io::Result::Ok(()) });
1907 /// ```
1908 pub fn bind<P: AsRef<Path>>(path: P) -> io::Result<Async<UnixDatagram>> {
1909 let path = path.as_ref().to_owned();
1910 Async::new(UnixDatagram::bind(path)?)
1911 }
1912
1913 /// Creates a UDS datagram socket not bound to any address.
1914 ///
1915 /// # Examples
1916 ///
1917 /// ```no_run
1918 /// use async_io::Async;
1919 /// use std::os::unix::net::UnixDatagram;
1920 ///
1921 /// # futures_lite::future::block_on(async {
1922 /// let socket = Async::<UnixDatagram>::unbound()?;
1923 /// # std::io::Result::Ok(()) });
1924 /// ```
1925 pub fn unbound() -> io::Result<Async<UnixDatagram>> {
1926 Async::new(UnixDatagram::unbound()?)
1927 }
1928
1929 /// Creates an unnamed pair of connected Unix datagram sockets.
1930 ///
1931 /// # Examples
1932 ///
1933 /// ```no_run
1934 /// use async_io::Async;
1935 /// use std::os::unix::net::UnixDatagram;
1936 ///
1937 /// # futures_lite::future::block_on(async {
1938 /// let (socket1, socket2) = Async::<UnixDatagram>::pair()?;
1939 /// # std::io::Result::Ok(()) });
1940 /// ```
1941 pub fn pair() -> io::Result<(Async<UnixDatagram>, Async<UnixDatagram>)> {
1942 let (socket1, socket2) = UnixDatagram::pair()?;
1943 Ok((Async::new(socket1)?, Async::new(socket2)?))
1944 }
1945
1946 /// Receives data from the socket.
1947 ///
1948 /// Returns the number of bytes read and the address the message came from.
1949 ///
1950 /// # Examples
1951 ///
1952 /// ```no_run
1953 /// use async_io::Async;
1954 /// use std::os::unix::net::UnixDatagram;
1955 ///
1956 /// # futures_lite::future::block_on(async {
1957 /// let socket = Async::<UnixDatagram>::bind("/tmp/socket")?;
1958 ///
1959 /// let mut buf = [0u8; 1024];
1960 /// let (len, addr) = socket.recv_from(&mut buf).await?;
1961 /// # std::io::Result::Ok(()) });
1962 /// ```
1963 pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, UnixSocketAddr)> {
1964 self.read_with(|io| io.recv_from(buf)).await
1965 }
1966
1967 /// Sends data to the specified address.
1968 ///
1969 /// Returns the number of bytes written.
1970 ///
1971 /// # Examples
1972 ///
1973 /// ```no_run
1974 /// use async_io::Async;
1975 /// use std::os::unix::net::UnixDatagram;
1976 ///
1977 /// # futures_lite::future::block_on(async {
1978 /// let socket = Async::<UnixDatagram>::unbound()?;
1979 ///
1980 /// let msg = b"hello";
1981 /// let addr = "/tmp/socket";
1982 /// let len = socket.send_to(msg, addr).await?;
1983 /// # std::io::Result::Ok(()) });
1984 /// ```
1985 pub async fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> {
1986 self.write_with(|io| io.send_to(buf, &path)).await
1987 }
1988
1989 /// Receives data from the connected peer.
1990 ///
1991 /// Returns the number of bytes read and the address the message came from.
1992 ///
1993 /// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address.
1994 /// This method will fail if the socket is not connected.
1995 ///
1996 /// # Examples
1997 ///
1998 /// ```no_run
1999 /// use async_io::Async;
2000 /// use std::os::unix::net::UnixDatagram;
2001 ///
2002 /// # futures_lite::future::block_on(async {
2003 /// let socket = Async::<UnixDatagram>::bind("/tmp/socket1")?;
2004 /// socket.get_ref().connect("/tmp/socket2")?;
2005 ///
2006 /// let mut buf = [0u8; 1024];
2007 /// let len = socket.recv(&mut buf).await?;
2008 /// # std::io::Result::Ok(()) });
2009 /// ```
2010 pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
2011 self.read_with(|io| io.recv(buf)).await
2012 }
2013
2014 /// Sends data to the connected peer.
2015 ///
2016 /// Returns the number of bytes written.
2017 ///
2018 /// The [`connect`][`UnixDatagram::connect()`] method connects this socket to a remote address.
2019 /// This method will fail if the socket is not connected.
2020 ///
2021 /// # Examples
2022 ///
2023 /// ```no_run
2024 /// use async_io::Async;
2025 /// use std::os::unix::net::UnixDatagram;
2026 ///
2027 /// # futures_lite::future::block_on(async {
2028 /// let socket = Async::<UnixDatagram>::bind("/tmp/socket1")?;
2029 /// socket.get_ref().connect("/tmp/socket2")?;
2030 ///
2031 /// let msg = b"hello";
2032 /// let len = socket.send(msg).await?;
2033 /// # std::io::Result::Ok(()) });
2034 /// ```
2035 pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
2036 self.write_with(|io| io.send(buf)).await
2037 }
2038}
2039
2040#[cfg(unix)]
2041impl TryFrom<std::os::unix::net::UnixDatagram> for Async<std::os::unix::net::UnixDatagram> {
2042 type Error = io::Error;
2043
2044 fn try_from(socket: std::os::unix::net::UnixDatagram) -> io::Result<Self> {
2045 Async::new(socket)
2046 }
2047}
2048
2049/// Polls a future once, waits for a wakeup, and then optimistically assumes the future is ready.
2050async fn optimistic(fut: impl Future<Output = io::Result<()>>) -> io::Result<()> {
2051 let mut polled = false;
2052 pin!(fut);
2053
2054 future::poll_fn(|cx| {
2055 if !polled {
2056 polled = true;
2057 fut.as_mut().poll(cx)
2058 } else {
2059 Poll::Ready(Ok(()))
2060 }
2061 })
2062 .await
2063}
2064
2065fn connect(
2066 addr: rn::SocketAddrAny,
2067 domain: rn::AddressFamily,
2068 protocol: Option<rn::Protocol>,
2069) -> io::Result<rustix::fd::OwnedFd> {
2070 #[cfg(windows)]
2071 use rustix::fd::AsFd;
2072
2073 setup_networking();
2074
2075 #[cfg(any(
2076 target_os = "android",
2077 target_os = "dragonfly",
2078 target_os = "freebsd",
2079 target_os = "fuchsia",
2080 target_os = "illumos",
2081 target_os = "linux",
2082 target_os = "netbsd",
2083 target_os = "openbsd"
2084 ))]
2085 let socket = rn::socket_with(
2086 domain,
2087 rn::SocketType::STREAM,
2088 rn::SocketFlags::CLOEXEC | rn::SocketFlags::NONBLOCK,
2089 protocol,
2090 )?;
2091
2092 #[cfg(not(any(
2093 target_os = "android",
2094 target_os = "dragonfly",
2095 target_os = "freebsd",
2096 target_os = "fuchsia",
2097 target_os = "illumos",
2098 target_os = "linux",
2099 target_os = "netbsd",
2100 target_os = "openbsd"
2101 )))]
2102 let socket = {
2103 #[cfg(not(any(
2104 target_os = "aix",
2105 target_vendor = "apple",
2106 target_os = "espidf",
2107 windows,
2108 )))]
2109 let flags = rn::SocketFlags::CLOEXEC;
2110 #[cfg(any(
2111 target_os = "aix",
2112 target_vendor = "apple",
2113 target_os = "espidf",
2114 windows,
2115 ))]
2116 let flags = rn::SocketFlags::empty();
2117
2118 // Create the socket.
2119 let socket = rn::socket_with(domain, rn::SocketType::STREAM, flags, protocol)?;
2120
2121 // Set cloexec if necessary.
2122 #[cfg(any(target_os = "aix", target_vendor = "apple"))]
2123 rio::fcntl_setfd(&socket, rio::fcntl_getfd(&socket)? | rio::FdFlags::CLOEXEC)?;
2124
2125 // Set non-blocking mode.
2126 set_nonblocking(socket.as_fd())?;
2127
2128 socket
2129 };
2130
2131 // Set nosigpipe if necessary.
2132 #[cfg(any(
2133 target_vendor = "apple",
2134 target_os = "freebsd",
2135 target_os = "netbsd",
2136 target_os = "dragonfly",
2137 ))]
2138 rn::sockopt::set_socket_nosigpipe(&socket, true)?;
2139
2140 // Set the handle information to HANDLE_FLAG_INHERIT.
2141 #[cfg(windows)]
2142 unsafe {
2143 if windows_sys::Win32::Foundation::SetHandleInformation(
2144 socket.as_raw_socket() as _,
2145 windows_sys::Win32::Foundation::HANDLE_FLAG_INHERIT,
2146 windows_sys::Win32::Foundation::HANDLE_FLAG_INHERIT,
2147 ) == 0
2148 {
2149 return Err(io::Error::last_os_error());
2150 }
2151 }
2152
2153 #[allow(unreachable_patterns)]
2154 match rn::connect(&socket, &addr) {
2155 Ok(_) => {}
2156 #[cfg(unix)]
2157 Err(rio::Errno::INPROGRESS) => {}
2158 Err(rio::Errno::AGAIN) | Err(rio::Errno::WOULDBLOCK) => {}
2159 Err(err) => return Err(err.into()),
2160 }
2161 Ok(socket)
2162}
2163
2164#[inline]
2165fn setup_networking() {
2166 #[cfg(windows)]
2167 {
2168 // On Windows, we need to call WSAStartup before calling any networking code.
2169 // Make sure to call it at least once.
2170 static INIT: std::sync::Once = std::sync::Once::new();
2171
2172 INIT.call_once(|| {
2173 let _ = rustix::net::wsa_startup();
2174 });
2175 }
2176}
2177
2178#[inline]
2179fn set_nonblocking(
2180 #[cfg(unix)] fd: BorrowedFd<'_>,
2181 #[cfg(windows)] fd: BorrowedSocket<'_>,
2182) -> io::Result<()> {
2183 cfg_if::cfg_if! {
2184 // ioctl(FIONBIO) sets the flag atomically, but we use this only on Linux
2185 // for now, as with the standard library, because it seems to behave
2186 // differently depending on the platform.
2187 // https://github.com/rust-lang/rust/commit/efeb42be2837842d1beb47b51bb693c7474aba3d
2188 // https://github.com/libuv/libuv/blob/e9d91fccfc3e5ff772d5da90e1c4a24061198ca0/src/unix/poll.c#L78-L80
2189 // https://github.com/tokio-rs/mio/commit/0db49f6d5caf54b12176821363d154384357e70a
2190 if #[cfg(any(windows, target_os = "linux"))] {
2191 rustix::io::ioctl_fionbio(fd, true)?;
2192 } else {
2193 let previous = rustix::fs::fcntl_getfl(fd)?;
2194 let new = previous | rustix::fs::OFlags::NONBLOCK;
2195 if new != previous {
2196 rustix::fs::fcntl_setfl(fd, new)?;
2197 }
2198 }
2199 }
2200
2201 Ok(())
2202}
2203
2204/// Converts a `Path` to its socket address representation.
2205///
2206/// This function is abstract socket-aware.
2207#[cfg(unix)]
2208#[inline]
2209fn convert_path_to_socket_address(path: &Path) -> io::Result<rn::SocketAddrUnix> {
2210 // SocketAddrUnix::new() will throw EINVAL when a path with a zero in it is passed in.
2211 // However, some users expect to be able to pass in paths to abstract sockets, which
2212 // triggers this error as it has a zero in it. Therefore, if a path starts with a zero,
2213 // make it an abstract socket.
2214 #[cfg(any(target_os = "linux", target_os = "android"))]
2215 let address = {
2216 use std::os::unix::ffi::OsStrExt;
2217
2218 let path = path.as_os_str();
2219 match path.as_bytes().first() {
2220 Some(0) => rn::SocketAddrUnix::new_abstract_name(path.as_bytes().get(1..).unwrap())?,
2221 _ => rn::SocketAddrUnix::new(path)?,
2222 }
2223 };
2224
2225 // Only Linux and Android support abstract sockets.
2226 #[cfg(not(any(target_os = "linux", target_os = "android")))]
2227 let address = rn::SocketAddrUnix::new(path)?;
2228
2229 Ok(address)
2230}