1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
use std::fmt;
use std::pin::Pin;
#[cfg(feature = "runtime-async-std")]
use async_std::io::{Read, Write, WriteExt};
use bytes::BytesMut;
use futures::stream::Stream;
use futures::task::{Context, Poll};
use futures::{io, ready};
use nom::Needed;
#[cfg(feature = "runtime-tokio")]
use tokio::io::{AsyncRead as Read, AsyncWrite as Write, AsyncWriteExt};
use crate::types::{Request, ResponseData};
/// Wraps a stream, and parses incoming data as imap server messages. Writes outgoing data
/// as imap client messages.
#[derive(Debug)]
pub struct ImapStream<R: Read + Write> {
// TODO: write some buffering logic
/// The underlying stream
pub(crate) inner: R,
/// Number of bytes the next decode operation needs if known.
/// If the buffer contains less than this, it is a waste of time to try to parse it.
/// If unknown, set it to 0, so decoding is always attempted.
decode_needs: usize,
/// The buffer.
buffer: Buffer,
}
impl<R: Read + Write + Unpin> ImapStream<R> {
/// Creates a new `ImapStream` based on the given `Read`er.
pub fn new(inner: R) -> Self {
ImapStream {
inner,
buffer: Buffer::new(),
decode_needs: 0,
}
}
pub async fn encode(&mut self, msg: Request) -> Result<(), io::Error> {
log::trace!(
"encode: input: {:?}, {:?}",
msg.0,
std::str::from_utf8(&msg.1)
);
if let Some(tag) = msg.0 {
self.inner.write_all(tag.as_bytes()).await?;
self.inner.write(b" ").await?;
}
self.inner.write_all(&msg.1).await?;
self.inner.write_all(b"\r\n").await?;
Ok(())
}
pub fn into_inner(self) -> R {
self.inner
}
/// Flushes the underlying stream.
pub async fn flush(&mut self) -> Result<(), io::Error> {
self.inner.flush().await
}
pub fn as_mut(&mut self) -> &mut R {
&mut self.inner
}
}
impl<R: Read + Write + Unpin> ImapStream<R> {
/// Attempts to decode a single response from the buffer.
///
/// Returns `None` if the buffer does not contain enough data.
fn decode(&mut self) -> io::Result<Option<ResponseData>> {
if self.buffer.used() < self.decode_needs {
// We know that there is not enough data to decode anything
// from previous attempts.
return Ok(None);
}
let block = self.buffer.take_block();
// Be aware, now self.buffer is invalid until block is returned or reset!
let res = ResponseData::try_new_or_recover(block, |buf| {
let buf = &buf[..self.buffer.used()];
log::trace!("decode: input: {:?}", std::str::from_utf8(buf));
match imap_proto::parser::parse_response(buf) {
Ok((remaining, response)) => {
// TODO: figure out if we can use a minimum required size for a response.
self.decode_needs = 0;
self.buffer.reset_with_data(remaining);
Ok(response)
}
Err(nom::Err::Incomplete(Needed::Size(min))) => {
log::trace!("decode: incomplete data, need minimum {} bytes", min);
self.decode_needs = self.buffer.used() + usize::from(min);
Err(None)
}
Err(nom::Err::Incomplete(_)) => {
log::trace!("decode: incomplete data, need unknown number of bytes");
self.decode_needs = 0;
Err(None)
}
Err(other) => {
self.decode_needs = 0;
Err(Some(io::Error::new(
io::ErrorKind::Other,
format!("{:?} during parsing of {:?}", other, buf),
)))
}
}
});
match res {
Ok(response) => Ok(Some(response)),
Err((heads, err)) => {
self.buffer.return_block(heads);
match err {
Some(err) => Err(err),
None => Ok(None),
}
}
}
}
}
/// Abstraction around needed buffer management.
struct Buffer {
/// The buffer itself.
block: BytesMut,
/// Offset where used bytes range ends.
offset: usize,
}
impl Buffer {
const BLOCK_SIZE: usize = 1024 * 4;
const MAX_CAPACITY: usize = 512 * 1024 * 1024; // 512 MiB
fn new() -> Self {
Self {
block: BytesMut::zeroed(Self::BLOCK_SIZE),
offset: 0,
}
}
/// Returns the number of bytes in the buffer containing data.
fn used(&self) -> usize {
self.offset
}
/// Returns the unused part of the buffer to which new data can be written.
fn free_as_mut_slice(&mut self) -> &mut [u8] {
&mut self.block[self.offset..]
}
/// Indicate how many new bytes were written into the buffer.
///
/// When new bytes are written into the slice returned by [`free_as_mut_slice`] this method
/// should be called to extend the used portion of the buffer to include the new data.
///
/// You can not write past the end of the buffer, so extending more then there is free
/// space marks the entire buffer as used.
///
/// [`free_as_mut_slice`]: Self::free_as_mut_slice
// aka advance()?
fn extend_used(&mut self, num_bytes: usize) {
self.offset += num_bytes;
if self.offset > self.block.len() {
self.offset = self.block.len();
}
}
/// Ensure the buffer has free capacity, optionally ensuring minimum buffer size.
fn ensure_capacity(&mut self, required: usize) -> io::Result<()> {
let free_bytes: usize = self.block.len() - self.offset;
let min_required_bytes: usize = required;
let extra_bytes_needed: usize = min_required_bytes.saturating_sub(self.block.len());
if free_bytes == 0 || extra_bytes_needed > 0 {
let increase = std::cmp::max(Buffer::BLOCK_SIZE, extra_bytes_needed);
self.grow(increase)?;
}
// Assert that the buffer at least one free byte.
debug_assert!(self.offset < self.block.len());
Ok(())
}
/// Grows the buffer, ensuring there are free bytes in the tail.
///
/// The specified number of bytes is only a minimum. The buffer could grow by more as
/// it will always grow in multiples of [`BLOCK_SIZE`].
///
/// If the size would be larger than [`MAX_CAPACITY`] an error is returned.
///
/// [`BLOCK_SIZE`]: Self::BLOCK_SIZE
/// [`MAX_CAPACITY`]: Self::MAX_CAPACITY
fn grow(&mut self, num_bytes: usize) -> io::Result<()> {
let min_size = self.block.len() + num_bytes;
let new_size = match min_size % Self::BLOCK_SIZE {
0 => min_size,
n => min_size + (Self::BLOCK_SIZE - n),
};
if new_size > Self::MAX_CAPACITY {
Err(io::Error::new(
io::ErrorKind::Other,
"incoming data too large",
))
} else {
self.block.resize(new_size, 0);
Ok(())
}
}
/// Return the block backing the buffer.
///
/// Next you *must* either return this block using [`return_block`] or call
/// [`reset_with_data`].
///
/// [`return_block`]: Self::return_block
/// [`reset_with_data`]: Self::reset_with_data
// TODO: Enforce this with typestate.
fn take_block(&mut self) -> BytesMut {
std::mem::replace(&mut self.block, BytesMut::zeroed(Self::BLOCK_SIZE))
}
/// Reset the buffer to be a new allocation with given data copied in.
///
/// This allows the previously returned block from `get_block` to be used in and owned
/// by the [ResponseData].
///
/// This does not do any bounds checking to see if the new buffer would exceed the
/// maximum size. It will however ensure that there is at least some free space at the
/// end of the buffer so that the next reading operation won't need to realloc right
/// away. This could be wasteful if the next action on the buffer is another decode
/// rather than a read, but we don't know.
fn reset_with_data(&mut self, data: &[u8]) {
let min_size = data.len();
let new_size = match min_size % Self::BLOCK_SIZE {
0 => min_size + Self::BLOCK_SIZE,
n => min_size + (Self::BLOCK_SIZE - n),
};
self.block = BytesMut::zeroed(new_size);
self.block[..data.len()].copy_from_slice(data);
self.offset = data.len();
}
/// Return the block which backs this buffer.
fn return_block(&mut self, block: BytesMut) {
self.block = block;
}
}
impl fmt::Debug for Buffer {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Buffer")
.field("used", &self.used())
.field("capacity", &self.block.capacity())
.finish()
}
}
impl<R: Read + Write + Unpin> Stream for ImapStream<R> {
type Item = io::Result<ResponseData>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let this = &mut *self;
if let Some(response) = this.decode()? {
return Poll::Ready(Some(Ok(response)));
}
loop {
this.buffer.ensure_capacity(this.decode_needs)?;
let buf = this.buffer.free_as_mut_slice();
// The buffer should have at least one byte free
// before we try reading into it
// so we can treat 0 bytes read as EOF.
// This is guaranteed by `ensure_capacity()` above
// even if it is called with 0 as an argument.
debug_assert!(!buf.is_empty());
#[cfg(feature = "runtime-async-std")]
let num_bytes_read = ready!(Pin::new(&mut this.inner).poll_read(cx, buf))?;
#[cfg(feature = "runtime-tokio")]
let num_bytes_read = {
let buf = &mut tokio::io::ReadBuf::new(buf);
let start = buf.filled().len();
ready!(Pin::new(&mut this.inner).poll_read(cx, buf))?;
buf.filled().len() - start
};
if num_bytes_read == 0 {
if this.buffer.used() > 0 {
return Poll::Ready(Some(Err(io::Error::new(
io::ErrorKind::UnexpectedEof,
"bytes remaining in stream",
))));
}
return Poll::Ready(None);
}
this.buffer.extend_used(num_bytes_read);
if let Some(response) = this.decode()? {
return Poll::Ready(Some(Ok(response)));
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::io::Write;
#[test]
fn test_buffer_empty() {
let buf = Buffer::new();
assert_eq!(buf.used(), 0);
let mut buf = Buffer::new();
let slice: &[u8] = buf.free_as_mut_slice();
assert_eq!(slice.len(), Buffer::BLOCK_SIZE);
assert_eq!(slice.len(), buf.block.len());
}
#[test]
fn test_buffer_extend_use() {
let mut buf = Buffer::new();
buf.extend_used(3);
assert_eq!(buf.used(), 3);
let slice = buf.free_as_mut_slice();
assert_eq!(slice.len(), Buffer::BLOCK_SIZE - 3);
// Extend past the end of the buffer.
buf.extend_used(Buffer::BLOCK_SIZE);
assert_eq!(buf.used(), Buffer::BLOCK_SIZE);
assert_eq!(buf.offset, Buffer::BLOCK_SIZE);
assert_eq!(buf.block.len(), buf.offset);
let slice = buf.free_as_mut_slice();
assert_eq!(slice.len(), 0);
}
#[test]
fn test_buffer_write_read() {
let mut buf = Buffer::new();
let mut slice = buf.free_as_mut_slice();
slice.write_all(b"hello").unwrap();
buf.extend_used(b"hello".len());
let slice = &buf.block[..buf.used()];
assert_eq!(slice, b"hello");
assert_eq!(buf.free_as_mut_slice().len(), buf.block.len() - buf.offset);
}
#[test]
fn test_buffer_grow() {
let mut buf = Buffer::new();
assert_eq!(buf.block.len(), Buffer::BLOCK_SIZE);
buf.grow(1).unwrap();
assert_eq!(buf.block.len(), 2 * Buffer::BLOCK_SIZE);
buf.grow(Buffer::BLOCK_SIZE + 1).unwrap();
assert_eq!(buf.block.len(), 4 * Buffer::BLOCK_SIZE);
let ret = buf.grow(Buffer::MAX_CAPACITY);
assert!(ret.is_err());
}
#[test]
fn test_buffer_ensure_capacity() {
// Initial state: 1 byte capacity left, initial size.
let mut buf = Buffer::new();
buf.extend_used(Buffer::BLOCK_SIZE - 1);
assert_eq!(buf.free_as_mut_slice().len(), 1);
assert_eq!(buf.block.len(), Buffer::BLOCK_SIZE);
// Still has capacity, no size request.
buf.ensure_capacity(0).unwrap();
assert_eq!(buf.free_as_mut_slice().len(), 1);
assert_eq!(buf.block.len(), Buffer::BLOCK_SIZE);
// No more capacity, initial size.
buf.extend_used(1);
assert_eq!(buf.free_as_mut_slice().len(), 0);
assert_eq!(buf.block.len(), Buffer::BLOCK_SIZE);
// No capacity, no size request.
buf.ensure_capacity(0).unwrap();
assert_eq!(buf.free_as_mut_slice().len(), Buffer::BLOCK_SIZE);
assert_eq!(buf.block.len(), 2 * Buffer::BLOCK_SIZE);
// Some capacity, size request.
buf.extend_used(5);
assert_eq!(buf.offset, Buffer::BLOCK_SIZE + 5);
buf.ensure_capacity(3 * Buffer::BLOCK_SIZE - 6).unwrap();
assert_eq!(buf.free_as_mut_slice().len(), 2 * Buffer::BLOCK_SIZE - 5);
assert_eq!(buf.block.len(), 3 * Buffer::BLOCK_SIZE);
}
/// Regression test for a bug in ensure_capacity() caused
/// by a bug in byte-pool crate 0.2.2 dependency.
///
/// ensure_capacity() sometimes did not ensure that
/// at least one byte is available, which in turn
/// resulted in attempt to read into a buffer of zero size.
/// When poll_read() reads into a buffer of zero size,
/// it can only read zero bytes, which is indistinguishable
/// from EOF and resulted in an erroneous detection of EOF
/// when in fact the stream was not closed.
#[test]
fn test_ensure_capacity_loop() {
let mut buf = Buffer::new();
for i in 1..500 {
// Ask for `i` bytes.
buf.ensure_capacity(i).unwrap();
// Test that we can read at least as much as requested.
let free = buf.free_as_mut_slice();
let used = free.len();
assert!(used >= i);
// Use as much as allowed.
buf.extend_used(used);
}
}
#[test]
fn test_buffer_take_and_return_block() {
// This test identifies blocks by their size.
let mut buf = Buffer::new();
buf.grow(1).unwrap();
let block_size = buf.block.len();
let block = buf.take_block();
assert_eq!(block.len(), block_size);
assert_ne!(buf.block.len(), block_size);
buf.return_block(block);
assert_eq!(buf.block.len(), block_size);
}
#[test]
fn test_buffer_reset_with_data() {
// This test identifies blocks by their size.
let data: [u8; 2 * Buffer::BLOCK_SIZE] = [b'a'; 2 * Buffer::BLOCK_SIZE];
let mut buf = Buffer::new();
let block_size = buf.block.len();
assert_eq!(block_size, Buffer::BLOCK_SIZE);
buf.reset_with_data(&data);
assert_ne!(buf.block.len(), block_size);
assert_eq!(buf.block.len(), 3 * Buffer::BLOCK_SIZE);
assert!(!buf.free_as_mut_slice().is_empty());
let data: [u8; 0] = [];
let mut buf = Buffer::new();
buf.reset_with_data(&data);
assert_eq!(buf.block.len(), Buffer::BLOCK_SIZE);
}
#[test]
fn test_buffer_debug() {
assert_eq!(
format!("{:?}", Buffer::new()),
format!(r#"Buffer {{ used: 0, capacity: {} }}"#, Buffer::BLOCK_SIZE)
);
}
}