1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
//! An efficient async condition variable for lock-free algorithms, a.k.a.
//! "eventcount".
//!
//! [Eventcount][eventcount]-like primitives are useful to make some operations
//! on a lock-free structure blocking, for instance to transform bounded queues
//! into bounded channels. Such a primitive allows an interested task to block
//! until a predicate is satisfied by checking the predicate each time it
//! receives a notification.
//!
//! While functionally similar to the [event_listener] crate, this
//! implementation is more opinionated and limited to the `async` case. It
//! strives to be more efficient, however, by limiting the amount of locking
//! operations on the mutex-protected list of notifiers: the lock is typically
//! taken only once for each time a waiter is blocked and once for notifying,
//! thus reducing the need for synchronization operations. Finally, spurious
//! wake-ups are only generated in very rare circumstances.
//!
//! This library is an offshoot of [Asynchronix][asynchronix], an ongoing effort
//! at a high performance asynchronous computation framework for system
//! simulation.
//!
//! [event_listener]: https://docs.rs/event_listener/latest/event_listener/
//! [eventcount]:
//!     https://www.1024cores.net/home/lock-free-algorithms/eventcounts
//! [asynchronix]: https://github.com/asynchronics/asynchronix
//!
//! # Examples
//!
//! Wait until a non-zero value has been sent asynchronously.
//!
//! ```
//! use std::sync::atomic::{AtomicUsize, Ordering};
//! use std::sync::Arc;
//! use std::thread;
//!
//! use futures_executor::block_on;
//!
//! use async_event::Event;
//!
//!
//! let value = Arc::new(AtomicUsize::new(0));
//! let event = Arc::new(Event::new());
//!
//! // Set a non-zero value concurrently.
//! thread::spawn({
//!     let value = value.clone();
//!     let event = event.clone();
//!
//!     move || {
//!         // A relaxed store is sufficient here: `Event::notify*` methods insert
//!         // atomic fences to warrant adequate synchronization.
//!         value.store(42, Ordering::Relaxed);
//!         event.notify_one();
//!     }
//! });
//!
//! // Wait until the value is set.
//! block_on(async move {
//!     let v = event
//!         .wait_until(|| {
//!             // A relaxed load is sufficient here: `Event::wait_until` inserts
//!             // atomic fences to warrant adequate synchronization.
//!             let v = value.load(Ordering::Relaxed);
//!             if v != 0 { Some(v) } else { None }
//!         })
//!         .await;
//!
//!      assert_eq!(v, 42);
//! });
//! ```

mod loom_exports;

use std::future::Future;
use std::mem;
use std::pin::Pin;
use std::ptr::NonNull;
use std::sync::atomic::Ordering;
use std::task::{Context, Poll, Waker};

use loom_exports::cell::UnsafeCell;
use loom_exports::sync::atomic::{self, AtomicBool};
use loom_exports::sync::Mutex;

/// An object that can receive or send notifications.
pub struct Event {
    wait_set: WaitSet,
}

impl Event {
    /// Creates a new event.
    pub fn new() -> Self {
        Self {
            wait_set: WaitSet::default(),
        }
    }

    /// Notify a number of awaiting events that the predicate should be checked.
    ///
    /// If less events than requested are currently awaiting, then all awaiting
    /// event are notified.
    #[inline(always)]
    pub fn notify(&self, n: usize) {
        // This fence synchronizes with the other fence in `WaitUntil::poll` and
        // ensures that either the `poll` method will successfully check the
        // predicate set before this call, or the notifier inserted by `poll`
        // will be visible in the wait list when calling `WaitSet::notify` (or
        // both).
        atomic::fence(Ordering::SeqCst);

        // Safety: all notifiers in the wait set are guaranteed to be alive
        // since the `WaitUntil` drop handler ensures that notifiers are removed
        // from the wait set before they are deallocated.
        unsafe {
            self.wait_set.notify_relaxed(n);
        }
    }

    /// Notify one awaiting event (if any) that the predicate should be checked.
    #[inline(always)]
    pub fn notify_one(&self) {
        self.notify(1);
    }

    /// Notify all awaiting events that the predicate should be checked.
    #[inline(always)]
    pub fn notify_all(&self) {
        self.notify(usize::MAX);
    }

    /// Returns a future that can be `await`ed until the provided predicate is
    /// satisfied.
    pub fn wait_until<F: FnMut() -> Option<T>, T>(&self, predicate: F) -> WaitUntil<F, T> {
        WaitUntil::new(&self.wait_set, predicate)
    }
}

impl Default for Event {
    fn default() -> Self {
        Self::new()
    }
}

unsafe impl Send for Event {}
unsafe impl Sync for Event {}

/// A waker wrapper that can be inserted in a list.
///
/// A notifier always has an exclusive owner or borrower, except in one edge
/// case: the `WaitSet::remove_relaxed()` method may create a shared reference
/// while the notifier is concurrently accessed under the `wait_set` mutex by
/// one of the `WaitSet` methods. So occasionally 2 references to a `Notifier`
/// will exist at the same time, meaning that even when accessed under the
/// `wait_set` mutex, a notifier can only be accessed by reference.
struct Notifier {
    /// The current waker, if any.
    waker: Option<Waker>,
    /// Pointer to the previous wait set notifier.
    prev: UnsafeCell<Option<NonNull<Notifier>>>,
    /// Pointer to the next wait set notifier.
    next: UnsafeCell<Option<NonNull<Notifier>>>,
    /// Flag indicating whether the notifier is currently in the wait set.
    in_wait_set: AtomicBool,
}

impl Notifier {
    /// Creates a new Notifier without any registered waker.
    fn new() -> Self {
        Self {
            waker: None,
            prev: UnsafeCell::new(None),
            next: UnsafeCell::new(None),
            in_wait_set: AtomicBool::new(false),
        }
    }

    /// Stores the specified waker if it differs from the cached waker.
    fn set_waker(&mut self, waker: &Waker) {
        if match &self.waker {
            Some(w) => !w.will_wake(waker),
            None => true,
        } {
            self.waker = Some(waker.clone());
        }
    }

    /// Notifies the task.
    fn wake(&self) {
        // Safety: the waker is only ever accessed mutably when the notifier is
        // itself accessed mutably. The caller claims shared (non-mutable)
        // ownership of the notifier, so there is not possible concurrent
        // mutable access to the notifier and therefore to the waker.
        if let Some(w) = &self.waker {
            w.wake_by_ref();
        }
    }
}

unsafe impl Send for Notifier {}
unsafe impl Sync for Notifier {}

/// A future that can be `await`ed until a predicate is satisfied.
pub struct WaitUntil<'a, F: FnMut() -> Option<T>, T> {
    state: WaitUntilState,
    predicate: F,
    wait_set: &'a WaitSet,
}

impl<'a, F: FnMut() -> Option<T>, T> WaitUntil<'a, F, T> {
    /// Creates a future associated with the specified event sink that can be
    /// `await`ed until the specified predicate is satisfied.
    fn new(wait_set: &'a WaitSet, predicate: F) -> Self {
        Self {
            state: WaitUntilState::Idle,
            predicate,
            wait_set,
        }
    }
}

impl<F: FnMut() -> Option<T>, T> Drop for WaitUntil<'_, F, T> {
    fn drop(&mut self) {
        if let WaitUntilState::Polled(notifier) = self.state {
            // If we are in the `Polled` stated, it means that the future was
            // cancelled and its notifier may still be in the wait set: it is
            // necessary to cancel the notifier so that another event sink can
            // be notified if one is registered, and then to deallocate the
            // notifier.
            //
            // Safety: all notifiers in the wait set are guaranteed to be alive
            // since this drop handler ensures that notifiers are removed from
            // the wait set before they are deallocated. After the notifier is
            // removed from the list we can claim unique ownership and
            // deallocate the notifier.
            unsafe {
                self.wait_set.cancel(notifier);
                let _ = Box::from_raw(notifier.as_ptr());
            }
        }
    }
}

impl<'a, F: FnMut() -> Option<T>, T> Unpin for WaitUntil<'a, F, T> {}

unsafe impl<F: (FnMut() -> Option<T>) + Send, T: Send> Send for WaitUntil<'_, F, T> {}

impl<'a, F: FnMut() -> Option<T>, T> Future for WaitUntil<'a, F, T> {
    type Output = T;

    #[inline]
    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        assert!(self.state != WaitUntilState::Completed);

        // Remove the notifier if it is in the wait set. In most cases this will
        // be a cheap no-op because, unless the wake-up is spurious, the
        // notifier was already removed from the wait set.
        //
        // Removing the notifier before checking the predicate is necessary to
        // avoid races such as this one:
        //
        // 1) event sink A unsuccessfully checks the predicate, inserts its
        //    notifier in the wait set, unsuccessfully re-checks the predicate,
        //    returns `Poll::Pending`,
        // 2) event sink B unsuccessfully checks the predicate, inserts its
        //    notifier in the wait set, unsuccessfully re-checks the predicate,
        //    returns `Poll::Pending`,
        // 3) the event source makes one predicate satisfiable,
        // 4) event sink A is spuriously awaken and successfully checks the
        //    predicates, returns `Poll::Ready`,
        // 5) the event source notifies event sink B,
        // 6) event sink B is awaken and unsuccessfully checks the predicate,
        //    inserts its notifier in the wait set, unsuccessfully re-checks the
        //    predicate, returns `Poll::Pending`,
        // 7) the event source makes another predicate satisfiable.
        // 8) if now the notifier of event sink A was not removed from the wait
        //    set, the event source may notify event sink A (which is no longer
        //    interested) rather than event sink B, meaning that event sink B
        //    will never be notified.
        if let WaitUntilState::Polled(notifier) = self.state {
            // Safety: all notifiers in the wait set are guaranteed to be alive
            // since the `WaitUntil` drop handler ensures that notifiers are
            // removed from the wait set before they are deallocated. Using the
            // relaxed version of `notify` is enough since the notifier was
            // inserted in the same future so there exists a happen-before
            // relationship with the insertion operation.
            unsafe { self.wait_set.remove_relaxed(notifier) };
        }

        // Fast path.
        if let Some(v) = (self.predicate)() {
            if let WaitUntilState::Polled(notifier) = self.state {
                // Safety: the notifier is no longer in the wait set so we can
                // claim unique ownership and deallocate the notifier.
                let _ = unsafe { Box::from_raw(notifier.as_ptr()) };
            }

            self.state = WaitUntilState::Completed;

            return Poll::Ready(v);
        }

        let mut notifier = if let WaitUntilState::Polled(notifier) = self.state {
            notifier
        } else {
            unsafe { NonNull::new_unchecked(Box::into_raw(Box::new(Notifier::new()))) }
        };

        // Set or update the notifier.
        //
        // Safety: the notifier is not (or no longer) in the wait list so we
        // have exclusive ownership.
        let waker = cx.waker();
        unsafe { notifier.as_mut().set_waker(waker) };

        // Safety: all notifiers in the wait set are guaranteed to be alive
        // since the `WaitUntil` drop handler ensures that notifiers are removed
        // from the wait set before they are deallocated.
        unsafe { self.wait_set.insert(notifier) };

        // This fence synchronizes with the other fence in `Event::notify` and
        // ensures that either the predicate below will be satisfied or the
        // event source will see the notifier inserted above in the wait list
        // after it makes the predicate satisfiable (or both).
        atomic::fence(Ordering::SeqCst);

        if let Some(v) = (self.predicate)() {
            // We need to cancel and not merely remove the notifier from the
            // wait set so that another event sink can be notified in case we
            // have been notified just after checking the predicate. This is an
            // example of race that makes this necessary:
            //
            // 1) event sink A and event sink B both unsuccessfully check the
            //    predicate,
            // 2) the event source makes one predicate satisfiable and tries to
            //    notify an event sink but fails since no notifier has been
            //    inserted in the wait set yet,
            // 3) event sink A and event sink B both insert their notifier in
            //    the wait set,
            // 4) event sink A re-checks the predicate, successfully,
            // 5) event sink B re-checks the predicate, unsuccessfully,
            // 6) the event source makes another predicate satisfiable,
            // 7) the event source sends a notification for the second predicate
            //    but unfortunately chooses the "wrong" notifier in the wait
            //    set, i.e. that of event sink A -- note that this is always
            //    possible irrespective of FIFO or LIFO ordering because it also
            //    depends on the order of notifier insertion in step 3)
            // 8) if, before returning, event sink A merely removes itself from
            //    the wait set without notifying another event sink, then event
            //    sink B will never be notified.
            //
            // Safety: all notifiers in the wait set are guaranteed to be alive
            // since the `WaitUntil` drop handler ensures that notifiers are
            // removed from the wait set before they are deallocated.
            unsafe {
                self.wait_set.cancel(notifier);
            }

            self.state = WaitUntilState::Completed;

            // Safety: the notifier is not longer in the wait set so we can
            // claim unique ownership and deallocate the notifier.
            let _ = unsafe { Box::from_raw(notifier.as_ptr()) };

            return Poll::Ready(v);
        }

        self.state = WaitUntilState::Polled(notifier);

        Poll::Pending
    }
}

/// State of the `WaitUntil` future.
#[derive(PartialEq)]
enum WaitUntilState {
    Idle,
    Polled(NonNull<Notifier>),
    Completed,
}

/// A set of notifiers.
///
/// The set wraps a Mutex-protected list of notifiers and manages a flag for
/// fast assessment of list emptiness.
struct WaitSet {
    list: Mutex<List>,
    is_empty: AtomicBool,
}

impl WaitSet {
    /// Inserts a node in the wait set.
    ///
    /// # Safety
    ///
    /// The specified notifier and all notifiers in the wait set must be alive.
    /// The notifier should not be already in the wait set.
    unsafe fn insert(&self, notifier: NonNull<Notifier>) {
        let mut list = self.list.lock().unwrap();

        #[cfg(any(debug_assertions, async_event_loom))]
        if notifier.as_ref().in_wait_set.load(Ordering::Relaxed) {
            drop(list); // avoids poisoning the lock
            panic!("the notifier was already in the wait set");
        }

        // Orderings: Relaxed ordering is sufficient since before this point the
        // notifier was not in the list and therefore not shared.
        notifier.as_ref().in_wait_set.store(true, Ordering::Relaxed);

        list.push_back(notifier);

        // Ordering: since this flag is only ever mutated within the
        // mutex-protected critical section, Relaxed ordering is sufficient.
        self.is_empty.store(false, Ordering::Relaxed);
    }

    /// Remove the specified notifier if it is still in the wait set.
    ///
    /// After a call to `remove`, the caller is guaranteed that the wait set
    /// will no longer access the specified notifier.
    ///
    /// Note that for performance reasons, the presence of the notifier in the
    /// list is checked without acquiring the lock. This fast check will never
    /// lead to a notifier staying in the list as long as there exists an
    /// happens-before relationship between this call and the earlier call to
    /// `insert`. A happens-before relationship always exists if these calls are
    /// made on the same thread or across `await` points.
    ///
    /// # Safety
    ///
    /// The specified notifier and all notifiers in the wait set must be alive.
    /// This function may fail to remove the notifier if a happens-before
    /// relationship does not exist with the previous call to `insert`.
    unsafe fn remove_relaxed(&self, notifier: NonNull<Notifier>) {
        // Preliminarily check whether the notifier is already in the list (fast
        // path).
        //
        // This is the only instance where the `in_wait_set` flag is accessed
        // outside the mutex-protected critical section while the notifier may
        // still be in the list. The only risk is that the load will be stale
        // and will read `true` even though the notifier is no longer in the
        // list, but this is not an issue since in that case the actual state
        // will be checked again after taking the lock.
        //
        // Ordering: Acquire synchronizes with the `Release` orderings in the
        // `notify` and `cancel` methods; it is necessary to ensure that the
        // waker is no longer in use by the wait set and can therefore be
        // modified after returning from `remove`.
        let in_wait_set = notifier.as_ref().in_wait_set.load(Ordering::Acquire);
        if !in_wait_set {
            return;
        }

        self.remove(notifier);
    }

    /// Remove the specified notifier if it is still in the wait set.
    ///
    /// After a call to `remove`, the caller is guaranteed that the wait set
    /// will no longer access the specified notifier.
    ///
    /// # Safety
    ///
    /// The specified notifier and all notifiers in the wait set must be alive.
    unsafe fn remove(&self, notifier: NonNull<Notifier>) {
        let mut list = self.list.lock().unwrap();

        // Check again whether the notifier is already in the list
        //
        // Ordering: since this flag is only ever mutated within the
        // mutex-protected critical section and since the wait set also accesses
        // the waker only in the critical section, even with Relaxed ordering it
        // is guaranteed that if `in_wait_set` reads `false` then the waker is
        // no longer in use by the wait set.
        let in_wait_set = notifier.as_ref().in_wait_set.load(Ordering::Relaxed);
        if !in_wait_set {
            return;
        }

        list.remove(notifier);
        if list.is_empty() {
            // Ordering: since this flag is only ever mutated within the
            // mutex-protected critical section, Relaxed ordering is sufficient.
            self.is_empty.store(true, Ordering::Relaxed);
        }

        // Ordering: this flag is only ever mutated within the mutex-protected
        // critical section and since the waker is not accessed in this method,
        // it does not need to synchronize with a later call to `remove`;
        // therefore, Relaxed ordering is sufficient.
        notifier
            .as_ref()
            .in_wait_set
            .store(false, Ordering::Relaxed);
    }

    /// Remove the specified notifier if it is still in the wait set, otherwise
    /// notify another event sink.
    ///
    /// After a call to `cancel`, the caller is guaranteed that the wait set
    /// will no longer access the specified notifier.
    ///
    /// # Safety
    ///
    /// The specified notifier and all notifiers in the wait set must be alive.
    /// Wakers of notifiers which pointer is in the wait set may not be accessed
    /// mutably.
    unsafe fn cancel(&self, notifier: NonNull<Notifier>) {
        let mut list = self.list.lock().unwrap();

        let in_wait_set = notifier.as_ref().in_wait_set.load(Ordering::Relaxed);
        if in_wait_set {
            list.remove(notifier);
            if list.is_empty() {
                self.is_empty.store(true, Ordering::Relaxed);
            }

            // Ordering: this flag is only ever mutated within the
            // mutex-protected critical section and since the waker is not
            // accessed, it does not need to synchronize with the Acquire load
            // in the `remove` method; therefore, Relaxed ordering is
            // sufficient.
            notifier
                .as_ref()
                .in_wait_set
                .store(false, Ordering::Relaxed);
        } else if let Some(other_notifier) = list.pop_front() {
            // Safety: the waker can be accessed by reference because the
            // event sink is not allowed to access the waker mutably before
            // `in_wait_set` is cleared.
            other_notifier.as_ref().wake();

            // Ordering: the Release memory ordering synchronizes with the
            // Acquire ordering in the `remove` method; it is required to
            // ensure that once `in_wait_set` reads `false` (using Acquire
            // ordering), the waker is no longer in use by the wait set and
            // can therefore be modified.
            other_notifier
                .as_ref()
                .in_wait_set
                .store(false, Ordering::Release);
        }
    }

    /// Send a notification to `count` notifiers within the wait set, or to all
    /// notifiers if the wait set contains less than `count` notifiers.
    ///
    /// Note that for performance reasons, list emptiness is checked without
    /// acquiring the wait set lock. Therefore, in order to prevent the
    /// possibility that a wait set is seen as empty when it isn't, external
    /// synchronization is required to make sure that all side effects of a
    /// previous call to `insert` are fully visible. For instance, an atomic
    /// memory fence maye be placed before this call and another one after the
    /// insertion of a notifier.
    ///
    /// # Safety
    ///
    /// All notifiers in the wait set must be alive. Wakers of notifiers which
    /// pointer is in the wait set may not be accessed mutably.
    #[inline(always)]
    unsafe fn notify_relaxed(&self, count: usize) {
        let is_empty = self.is_empty.load(Ordering::Relaxed);
        if is_empty {
            return;
        }

        self.notify(count);
    }

    /// Send a notification to `count` notifiers within the wait set, or to all
    /// notifiers if the wait set contains less than `count` notifiers.
    ///
    /// # Safety
    ///
    /// All notifiers in the wait set must be alive. Wakers of notifiers which
    /// pointer is in the wait set may not be accessed mutably.
    unsafe fn notify(&self, count: usize) {
        let mut list = self.list.lock().unwrap();
        for _ in 0..count {
            let notifier = {
                if let Some(notifier) = list.pop_front() {
                    if list.is_empty() {
                        self.is_empty.store(true, Ordering::Relaxed);
                    }
                    notifier
                } else {
                    return;
                }
            };

            // Note: the event sink must be notified before the end of the
            // mutex-protected critical section. Otherwise, a concurrent call to
            // `remove` could succeed in taking the lock before the waker has
            // been called, and seeing that the notifier is no longer in the
            // list would lead its caller to believe that it has now sole
            // ownership on the notifier even though the call to `wake` has yet
            // to be made.
            //
            // Safety: the waker can be accessed by reference since the event
            // sink is not allowed to access the waker mutably before
            // `in_wait_set` is cleared.
            notifier.as_ref().wake();

            // Ordering: the Release memory ordering synchronizes with the
            // Acquire ordering in the `remove` method; it is required to ensure
            // that once `in_wait_set` reads `false` (using Acquire ordering),
            // the waker can be safely modified.
            notifier
                .as_ref()
                .in_wait_set
                .store(false, Ordering::Release);
        }
    }
}

impl Default for WaitSet {
    fn default() -> Self {
        Self {
            list: Default::default(),
            is_empty: AtomicBool::new(true),
        }
    }
}

#[derive(Default)]
struct List {
    front: Option<NonNull<Notifier>>,
    back: Option<NonNull<Notifier>>,
}

impl List {
    /// Inserts a node at the back of the list.
    ///
    /// # Safety
    ///
    /// The provided notifier and all notifiers which pointer is in the list
    /// must be alive.
    unsafe fn push_back(&mut self, notifier: NonNull<Notifier>) {
        // Safety: the `prev` and `next` pointers are only be accessed when the
        // list is locked.
        let old_back = mem::replace(&mut self.back, Some(notifier));
        match old_back {
            None => self.front = Some(notifier),
            Some(prev) => prev.as_ref().next.with_mut(|n| *n = Some(notifier)),
        }

        // Link the new notifier.
        let notifier = notifier.as_ref();
        notifier.prev.with_mut(|n| *n = old_back);
        notifier.next.with_mut(|n| *n = None);
    }

    /// Removes and returns the notifier at the front of the list, if any.
    ///
    /// # Safety
    ///
    /// All notifiers which pointer is in the list must be alive.
    unsafe fn pop_front(&mut self) -> Option<NonNull<Notifier>> {
        let notifier = self.front?;

        // Unlink from the next notifier.
        let next = notifier.as_ref().next.with(|n| *n);
        self.front = next;
        match next {
            None => self.back = None,
            Some(next) => next.as_ref().prev.with_mut(|n| *n = None),
        }

        Some(notifier)
    }

    /// Removes the specified notifier.
    ///
    /// # Safety
    ///
    /// The specified notifier and all notifiers which pointer is in the list
    /// must be alive.
    unsafe fn remove(&mut self, notifier: NonNull<Notifier>) {
        // Unlink from the previous and next notifiers.
        let prev = notifier.as_ref().prev.with(|n| *n);
        let next = notifier.as_ref().next.with(|n| *n);
        match prev {
            None => self.front = next,
            Some(prev) => prev.as_ref().next.with_mut(|n| *n = next),
        }
        match next {
            None => self.back = prev,
            Some(next) => next.as_ref().prev.with_mut(|n| *n = prev),
        }
    }

    /// Returns `true` if the list is empty.
    fn is_empty(&self) -> bool {
        self.front.is_none()
    }
}

/// Non-loom tests.
#[cfg(all(test, not(async_event_loom)))]
mod tests {
    use super::*;

    use std::sync::atomic::AtomicUsize;
    use std::sync::Arc;
    use std::thread;

    use futures_executor::block_on;

    #[test]
    fn smoke() {
        static SIGNAL: AtomicBool = AtomicBool::new(false);

        let event = Arc::new(Event::new());

        let th_recv = {
            let event = event.clone();
            thread::spawn(move || {
                block_on(async move {
                    event
                        .wait_until(|| {
                            if SIGNAL.load(Ordering::Relaxed) {
                                Some(())
                            } else {
                                None
                            }
                        })
                        .await;

                    assert!(SIGNAL.load(Ordering::Relaxed));
                })
            })
        };

        SIGNAL.store(true, Ordering::Relaxed);
        event.notify_one();

        th_recv.join().unwrap();
    }

    #[test]
    fn one_to_many() {
        const RECEIVER_COUNT: usize = 4;
        static SIGNAL: AtomicBool = AtomicBool::new(false);

        let event = Arc::new(Event::new());

        let th_recv: Vec<_> = (0..RECEIVER_COUNT)
            .map(|_| {
                let event = event.clone();
                thread::spawn(move || {
                    block_on(async move {
                        event
                            .wait_until(|| {
                                if SIGNAL.load(Ordering::Relaxed) {
                                    Some(())
                                } else {
                                    None
                                }
                            })
                            .await;

                        assert!(SIGNAL.load(Ordering::Relaxed));
                    })
                })
            })
            .collect();

        SIGNAL.store(true, Ordering::Relaxed);
        event.notify_one();
        event.notify(3);

        for th in th_recv {
            th.join().unwrap();
        }
    }

    #[test]
    fn many_to_many() {
        const TOKEN_COUNT: usize = 4;
        static AVAILABLE_TOKENS: AtomicUsize = AtomicUsize::new(0);

        let event = Arc::new(Event::new());

        // Receive tokens from multiple threads.
        let th_recv: Vec<_> = (0..TOKEN_COUNT)
            .map(|_| {
                let event = event.clone();
                thread::spawn(move || {
                    block_on(async move {
                        event
                            .wait_until(|| {
                                AVAILABLE_TOKENS
                                    .fetch_update(Ordering::Relaxed, Ordering::Relaxed, |t| {
                                        if t > 0 {
                                            Some(t - 1)
                                        } else {
                                            None
                                        }
                                    })
                                    .ok()
                            })
                            .await;
                    })
                })
            })
            .collect();

        // Make tokens available from multiple threads.
        let th_send: Vec<_> = (0..TOKEN_COUNT)
            .map(|_| {
                let event = event.clone();
                thread::spawn(move || {
                    AVAILABLE_TOKENS.fetch_add(1, Ordering::Relaxed);
                    event.notify_one();
                })
            })
            .collect();

        for th in th_recv {
            th.join().unwrap();
        }
        for th in th_send {
            th.join().unwrap();
        }

        assert!(AVAILABLE_TOKENS.load(Ordering::Relaxed) == 0);
    }

    #[test]
    fn notify_all() {
        const RECEIVER_COUNT: usize = 4;
        static SIGNAL: AtomicBool = AtomicBool::new(false);

        let event = Arc::new(Event::new());

        let th_recv: Vec<_> = (0..RECEIVER_COUNT)
            .map(|_| {
                let event = event.clone();
                thread::spawn(move || {
                    block_on(async move {
                        event
                            .wait_until(|| {
                                if SIGNAL.load(Ordering::Relaxed) {
                                    Some(())
                                } else {
                                    None
                                }
                            })
                            .await;

                        assert!(SIGNAL.load(Ordering::Relaxed));
                    })
                })
            })
            .collect();

        SIGNAL.store(true, Ordering::Relaxed);
        event.notify_all();

        for th in th_recv {
            th.join().unwrap();
        }
    }
}

/// Loom tests.
#[cfg(all(test, async_event_loom))]
mod tests {
    use super::*;

    use std::future::Future;
    use std::marker::PhantomPinned;
    use std::task::{Context, Poll};

    use loom::model::Builder;
    use loom::sync::atomic::AtomicUsize;
    use loom::sync::Arc;
    use loom::thread;

    use waker_fn::waker_fn;

    /// A waker factory that accepts notifications from the newest waker only.
    #[derive(Clone, Default)]
    struct MultiWaker {
        state: Arc<AtomicUsize>,
    }

    impl MultiWaker {
        /// Clears the notification flag.
        ///
        /// This operation has unconditional Relaxed semantic and for this
        /// reason should be used instead of `take_notification` when the intent
        /// is only to cancel a notification for book-keeping purposes, e.g. to
        /// simulate a spurious wake-up, without introducing unwanted
        /// synchronization.
        fn clear_notification(&self) {
            self.state.fetch_and(!1, Ordering::Relaxed);
        }

        /// Clears the notification flag and returns the former notification
        /// status.
        ///
        /// This operation has Acquire semantic when a notification is indeed
        /// present, and Relaxed otherwise. It is therefore appropriate to
        /// simulate a scheduler receiving a notification as it ensures that all
        /// memory operations preceding the notification of a task are visible.
        fn take_notification(&self) -> bool {
            // Clear the notification flag.
            let mut state = self.state.load(Ordering::Relaxed);
            loop {
                let notified_stated = state | 1;
                let unnotified_stated = state & !1;
                match self.state.compare_exchange_weak(
                    notified_stated,
                    unnotified_stated,
                    Ordering::Acquire,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return true,
                    Err(s) => {
                        state = s;
                        if state == unnotified_stated {
                            return false;
                        }
                    }
                }
            }
        }

        /// Clears the notification flag and creates a new waker.
        fn new_waker(&self) -> Waker {
            // Increase the epoch and clear the notification flag.
            let mut state = self.state.load(Ordering::Relaxed);
            let mut epoch;
            loop {
                // Increase the epoch by 2.
                epoch = (state & !1) + 2;
                match self.state.compare_exchange_weak(
                    state,
                    epoch,
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => break,
                    Err(s) => state = s,
                }
            }

            // Create a waker that only notifies if it is the newest waker.
            let waker_state = self.state.clone();
            waker_fn(move || {
                let mut state = waker_state.load(Ordering::Relaxed);
                loop {
                    let new_state = if state & !1 == epoch {
                        epoch | 1
                    } else {
                        break;
                    };
                    match waker_state.compare_exchange(
                        state,
                        new_state,
                        Ordering::Release,
                        Ordering::Relaxed,
                    ) {
                        Ok(_) => break,
                        Err(s) => state = s,
                    }
                }
            })
        }
    }

    /// A simple counter that can be used to simulate the availability of a
    /// certain number of AVAILABLE_TOKENS. In order to model the weakest possible
    /// predicate from the viewpoint of atomic memory ordering, only Relaxed
    /// atomic operations are used.
    #[derive(Default)]
    struct Counter {
        count: AtomicUsize,
    }

    impl Counter {
        fn increment(&self) {
            self.count.fetch_add(1, Ordering::Relaxed);
        }
        fn try_decrement(&self) -> Option<()> {
            let mut count = self.count.load(Ordering::Relaxed);
            loop {
                if count == 0 {
                    return None;
                }
                match self.count.compare_exchange(
                    count,
                    count - 1,
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => return Some(()),
                    Err(c) => count = c,
                }
            }
        }
    }

    /// A closure that contains the targets of all references captured by a
    /// `WaitUntil` Future.
    ///
    /// This ugly thing is needed to arbitrarily extend the lifetime of a
    /// `WaitUntil` future and thus mimic the behavior of an executor task.
    struct WaitUntilClosure {
        event: Arc<Event>,
        token_counter: Arc<Counter>,
        wait_until: Option<Box<dyn Future<Output = ()>>>,
        _pin: PhantomPinned,
    }

    impl WaitUntilClosure {
        /// Creates a `WaitUntil` future embedded together with the targets
        /// captured by reference.
        fn new(event: Arc<Event>, token_counter: Arc<Counter>) -> Pin<Box<Self>> {
            let res = Self {
                event,
                token_counter,
                wait_until: None,
                _pin: PhantomPinned,
            };
            let boxed = Box::new(res);

            // Artificially extend the lifetimes of the captured references.
            let event_ptr = &*boxed.event as *const Event;
            let token_counter_ptr = &boxed.token_counter as *const Arc<Counter>;

            // Safety: we now commit to never move the closure and to ensure
            // that the `WaitUntil` future does not outlive the captured
            // references.
            let wait_until: Box<dyn Future<Output = _>> = unsafe {
                Box::new((*event_ptr).wait_until(move || (*token_counter_ptr).try_decrement()))
            };
            let mut pinned_box: Pin<Box<WaitUntilClosure>> = boxed.into();

            let mut_ref: Pin<&mut Self> = Pin::as_mut(&mut pinned_box);
            unsafe {
                // This is safe: we are not moving the closure.
                Pin::get_unchecked_mut(mut_ref).wait_until = Some(wait_until);
            }

            pinned_box
        }

        /// Returns a pinned, type-erased `WaitUntil` future.
        fn as_pinned_future(self: Pin<&mut Self>) -> Pin<&mut dyn Future<Output = ()>> {
            unsafe { self.map_unchecked_mut(|s| s.wait_until.as_mut().unwrap().as_mut()) }
        }
    }

    impl Drop for WaitUntilClosure {
        fn drop(&mut self) {
            // Make sure that the `WaitUntil` future does not outlive its
            // captured references.
            self.wait_until = None;
        }
    }

    /// An enum that registers the final state of a `WaitUntil` future at the
    /// completion of a thread.
    ///
    /// When the future is still in a `Polled` state, this future is moved into
    /// the enum so as to extend its lifetime and allow it to be further
    /// notified.
    enum FutureState {
        Completed,
        Polled(Pin<Box<WaitUntilClosure>>),
        Cancelled,
    }

    /// Make a certain amount of AVAILABLE_TOKENS available and notify as many waiters
    /// among all registered waiters, possibly from several notifier threads.
    /// Optionally, it is possible to:
    /// - request that `max_spurious_wake` threads will simulate a spurious
    ///   wake-up if the waiter is polled and returns `Poll::Pending`,
    /// - request that `max_cancellations` threads will cancel the waiter if the
    ///   waiter is polled and returns `Poll::Pending`,
    /// - change the waker each time it is polled.
    ///
    /// Note that the aggregate number of specified cancellations and spurious
    /// wake-ups cannot exceed the number of waiters.
    fn loom_notify(
        token_count: usize,
        waiter_count: usize,
        notifier_count: usize,
        max_spurious_wake: usize,
        max_cancellations: usize,
        change_waker: bool,
        preemption_bound: usize,
    ) {
        let mut builder = Builder::new();
        if builder.preemption_bound.is_none() {
            builder.preemption_bound = Some(preemption_bound);
        }

        builder.check(move || {
            let token_counter = Arc::new(Counter::default());
            let event = Arc::new(Event::new());

            let mut wakers: Vec<MultiWaker> = Vec::new();
            wakers.resize_with(waiter_count, Default::default);

            let waiter_threads: Vec<_> = wakers
                .iter()
                .enumerate()
                .map(|(i, multi_waker)| {
                    thread::spawn({
                        let multi_waker = multi_waker.clone();
                        let mut wait_until =
                            WaitUntilClosure::new(event.clone(), token_counter.clone());

                        move || {
                            // `max_cancellations` threads will cancel the
                            // waiter if the waiter returns `Poll::Pending`.
                            let cancel_waiter = i < max_cancellations;
                            // `max_spurious_wake` threads will simulate a
                            // spurious wake-up if the waiter returns
                            // `Poll::Pending`.
                            let mut spurious_wake = i >= max_cancellations
                                && i < (max_cancellations + max_spurious_wake);

                            let mut waker = multi_waker.new_waker();
                            loop {
                                let mut cx = Context::from_waker(&waker);
                                let poll_state =
                                    wait_until.as_mut().as_pinned_future().poll(&mut cx);

                                // Return successfully if the predicate was
                                // checked successfully.
                                if matches!(poll_state, Poll::Ready(_)) {
                                    return FutureState::Completed;
                                }

                                // The future has returned Poll::Pending.
                                // Depending on the situation, we will either
                                // cancel the future, return and wait for a
                                // notification, or poll again.

                                if cancel_waiter {
                                    // The `wait_until` future is dropped while
                                    // in pending state, which simulates future
                                    // cancellation. Note that the notification
                                    // was intentionally cleared earlier so the
                                    // task will not be counted as a task that
                                    // should eventually succeed.
                                    return FutureState::Cancelled;
                                }
                                if spurious_wake {
                                    // Clear the notification, if any.
                                    multi_waker.clear_notification();
                                } else if !multi_waker.take_notification() {
                                    // The async runtime would normally keep the
                                    // `wait_until` future alive after `poll`
                                    // returns `Pending`. This behavior is
                                    // emulated by returning the `WaitUntil`
                                    // closure from the thread so as to extend
                                    // it lifetime.
                                    return FutureState::Polled(wait_until);
                                }

                                // The task was notified or spuriously awaken.
                                spurious_wake = false;
                                if change_waker {
                                    waker = multi_waker.new_waker();
                                }
                            }
                        }
                    })
                })
                .collect();

            // Increment the token count and notify a consumer after each
            // increment.
            assert!(notifier_count >= 1);
            assert!(token_count >= notifier_count);

            // Each notifier thread but the last one makes one and only one
            // token available.
            let notifier_threads: Vec<_> = (0..(notifier_count - 1))
                .map(|_| {
                    let token_counter = token_counter.clone();
                    let event = event.clone();
                    thread::spawn(move || {
                        token_counter.increment();
                        event.notify(1);
                    })
                })
                .collect();

            // The last notifier thread completes the number of AVAILABLE_TOKENS as
            // needed.
            for _ in 0..(token_count - (notifier_count - 1)) {
                token_counter.increment();
                event.notify(1);
            }

            // Join the remaining notifier threads.
            for th in notifier_threads {
                th.join().unwrap();
            }

            // Join all waiter threads and check which of them have successfully
            // checked the predicate. It is important that all `FutureState`
            // returned by the threads be kept alive until _all_ threads have
            // joined because `FutureState::Polled` items extend the lifetime of
            // their future so they can still be notified.
            let future_state: Vec<_> = waiter_threads
                .into_iter()
                .map(|th| th.join().unwrap())
                .collect();

            // See which threads have successfully completed. It is now OK to drop
            // the returned `FutureState`s.
            let success: Vec<_> = future_state
                .into_iter()
                .map(|state| match state {
                    FutureState::Completed => true,
                    _ => false,
                })
                .collect();

            // Check which threads have been notified, excluding those which
            // future was cancelled.
            let notified: Vec<_> = wakers
                .iter()
                .enumerate()
                .map(|(i, test_waker)| {
                    // Count the notification unless the thread was cancelled
                    // since in that case the notification would be missed.
                    test_waker.take_notification() && i >= max_cancellations
                })
                .collect();

            // Count how many threads have either succeeded or have been
            // notified.
            let actual_aggregate_count =
                success
                    .iter()
                    .zip(notified.iter())
                    .fold(0, |count, (&success, &notified)| {
                        if success || notified {
                            count + 1
                        } else {
                            count
                        }
                    });

            // Compare with the number of event sinks that should eventually succeed.
            let min_expected_success_count = token_count.min(waiter_count - max_cancellations);
            if actual_aggregate_count < min_expected_success_count {
                panic!(
                    "Successful threads: {:?}; Notified threads: {:?}",
                    success, notified
                );
            }
        });
    }

    #[test]
    fn loom_two_consumers() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(2, 2, 1, 0, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_spurious() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(2, 2, 1, 1, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_cancellation() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(2, 2, 1, 1, 1, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_change_waker() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(2, 2, 1, 0, 0, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_change_waker_spurious() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(2, 2, 1, 1, 0, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_change_waker_cancellation() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(1, 2, 1, 0, 1, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_change_waker_spurious_cancellation() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(2, 2, 1, 1, 1, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_three_AVAILABLE_TOKENS() {
        const DEFAULT_PREEMPTION_BOUND: usize = 3;
        loom_notify(3, 2, 1, 0, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(3, 3, 1, 0, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_spurious() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(3, 3, 1, 1, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_cancellation() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(2, 3, 1, 0, 1, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_change_waker() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(3, 3, 1, 0, 0, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_change_waker_spurious() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(3, 3, 1, 1, 0, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_change_waker_cancellation() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(3, 3, 1, 0, 1, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_change_waker_spurious_cancellation() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(3, 3, 1, 1, 1, true, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_three_consumers_two_tokens() {
        const DEFAULT_PREEMPTION_BOUND: usize = 2;
        loom_notify(2, 3, 1, 0, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_two_consumers_two_notifiers() {
        const DEFAULT_PREEMPTION_BOUND: usize = 3;
        loom_notify(2, 2, 2, 0, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
    #[test]
    fn loom_one_consumer_three_notifiers() {
        const DEFAULT_PREEMPTION_BOUND: usize = 4;
        loom_notify(3, 1, 3, 0, 0, false, DEFAULT_PREEMPTION_BOUND);
    }
}