1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
use crate::ffi;
use crate::memory::HostBuffer;
use crate::runtime::Future;
use crate::stream::Stream;
type Result<T> = std::result::Result<T, crate::error::Error>;
/// A buffer on the device.
///
/// # Example
///
/// Copying data from a [`HostBuffer`] to a [`DeviceBuffer`]:
///
/// ```
/// # use async_cuda::{DeviceBuffer, HostBuffer, Stream};
/// # tokio_test::block_on(async {
/// let stream = Stream::new().await.unwrap();
/// let all_ones = vec![1_u8; 100];
/// let host_buffer = HostBuffer::<u8>::from_slice(&all_ones).await;
/// let mut device_buffer = DeviceBuffer::<u8>::new(100, &stream).await;
/// device_buffer.copy_from(&host_buffer, &stream).await.unwrap();
/// # })
/// ```
pub struct DeviceBuffer<T: Copy + 'static> {
inner: ffi::memory::DeviceBuffer<T>,
}
impl<T: Copy + 'static> DeviceBuffer<T> {
/// Allocates memory on the device.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY__POOLS.html#group__CUDART__MEMORY__POOLS_1gbbf70065888d61853c047513baa14081)
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Arguments
///
/// * `num_elements` - Number of elements to allocate.
/// * `stream` - Stream to use.
pub async fn new(num_elements: usize, stream: &Stream) -> Self {
let inner =
Future::new(move || ffi::memory::DeviceBuffer::<T>::new(num_elements, stream.inner()))
.await;
Self { inner }
}
/// Allocate memory on the device, and copy data from host into it.
///
/// This function creates a temporary [`HostBuffer`], copies the slice into it, then finally
/// copies the data from the host buffer to the [`DeviceBuffer`].
///
/// The given stream is automatically synchronized, since the temporary host buffer might
/// otherwise be dropped before the copy can complete.
///
/// # Arguments
///
/// * `slice` - Data to copy into the buffer.
/// * `stream` - Stream to use.
pub async fn from_slice(slice: &[T], stream: &Stream) -> Result<Self> {
let host_buffer = HostBuffer::from_slice(slice).await;
let mut this = Self::new(slice.len(), stream).await;
this.copy_from(&host_buffer, stream).await?;
Ok(this)
}
/// Allocate memory on the device, and copy array from host into it.
///
/// This function creates a temporary [`HostBuffer`], copies the slice into it, then finally
/// copies the data from the host buffer to the [`DeviceBuffer`].
///
/// The given stream is automatically synchronized, since the temporary host buffer might
/// otherwise be dropped before the copy can complete.
///
/// # Arguments
///
/// * `slice` - Data to copy into the buffer.
/// * `stream` - Stream to use.
#[cfg(feature = "ndarray")]
pub async fn from_array<D: ndarray::Dimension>(
array: &ndarray::ArrayView<'_, T, D>,
stream: &Stream,
) -> Result<Self> {
let host_buffer = HostBuffer::from_array(array).await;
let mut this = Self::new(array.len(), stream).await;
this.copy_from(&host_buffer, stream).await?;
Ok(this)
}
/// Copies memory from the provided pinned host buffer to this buffer.
///
/// This function synchronizes the stream implicitly.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// The other buffer (of type [`HostBuffer`]) is always a pinned buffer. This function is
/// guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Arguments
///
/// * `other` - Buffer to copy from.
/// * `stream` - Stream to use.
#[inline]
pub async fn copy_from(&mut self, other: &HostBuffer<T>, stream: &Stream) -> Result<()> {
// SAFETY: Stream is synchronized after this.
unsafe {
self.copy_from_async(other, stream).await?;
}
stream.synchronize().await?;
Ok(())
}
/// Copies memory from the provided pinned host buffer to this buffer.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// The other buffer (of type [`HostBuffer`]) is always a pinned buffer. This function is
/// guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Safety
///
/// This function is unsafe because the operation might not have completed when the function
/// returns, and thus the state of the buffer is undefined.
///
/// # Arguments
///
/// * `other` - Buffer to copy from.
/// * `stream` - Stream to use.
pub async unsafe fn copy_from_async(
&mut self,
other: &HostBuffer<T>,
stream: &Stream,
) -> Result<()> {
assert_eq!(self.num_elements(), other.num_elements());
Future::new(move || self.inner.copy_from_async(other.inner(), stream.inner())).await
}
/// Copies memory from this buffer to the provided pinned host buffer.
///
/// This function synchronizes the stream implicitly.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// The other buffer (of type [`HostBuffer`]) is always a pinned buffer. This function is
/// guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Arguments
///
/// * `other` - Buffer to copy to.
/// * `stream` - Stream to use.
#[inline]
pub async fn copy_to(&self, other: &mut HostBuffer<T>, stream: &Stream) -> Result<()> {
// SAFETY: Stream is synchronized after this.
unsafe {
self.copy_to_async(other, stream).await?;
}
stream.synchronize().await?;
Ok(())
}
/// Copies memory from this buffer to the provided pinned host buffer.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// The other buffer (of type [`HostBuffer`]) is always a pinned buffer. This function is
/// guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Safety
///
/// This function is unsafe because the operation might not have completed when the function
/// returns, and thus the state of the buffer is undefined.
///
/// # Arguments
///
/// * `other` - Buffer to copy to.
/// * `stream` - Stream to use.
pub async unsafe fn copy_to_async(
&self,
other: &mut HostBuffer<T>,
stream: &Stream,
) -> Result<()> {
assert_eq!(self.num_elements(), other.num_elements());
Future::new(move || self.inner.copy_to_async(other.inner_mut(), stream.inner())).await
}
/// Fill the entire buffer with the given byte.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g7c9761e21d9f0999fd136c51e7b9b2a0)
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Arguments
///
/// * `value` - Byte value to fill buffer with.
pub async fn fill_with_byte(&mut self, value: u8, stream: &Stream) -> Result<()> {
Future::new(move || self.inner.fill_with_byte(value, stream.inner())).await
}
/// Get number of elements in buffer.
#[inline(always)]
pub fn num_elements(&self) -> usize {
self.inner.num_elements
}
/// Access the inner synchronous implementation of [`DeviceBuffer`].
#[inline(always)]
pub fn inner(&self) -> &ffi::memory::DeviceBuffer<T> {
&self.inner
}
/// Access the inner synchronous implementation of [`DeviceBuffer`].
#[inline(always)]
pub fn inner_mut(&mut self) -> &mut ffi::memory::DeviceBuffer<T> {
&mut self.inner
}
}
#[cfg(test)]
mod tests {
use super::*;
#[tokio::test]
async fn test_new() {
let buffer = DeviceBuffer::<u32>::new(100, &Stream::null()).await;
assert_eq!(buffer.num_elements(), 100);
}
#[tokio::test]
async fn test_copy() {
let stream = Stream::new().await.unwrap();
let all_ones = vec![1_u32; 100];
let host_buffer_all_ones = HostBuffer::from_slice(all_ones.as_slice()).await;
let mut device_buffer = DeviceBuffer::<u32>::new(100, &stream).await;
unsafe {
device_buffer
.copy_from_async(&host_buffer_all_ones, &stream)
.await
.unwrap();
}
let mut host_buffer = HostBuffer::<u32>::new(100).await;
unsafe {
device_buffer
.copy_to_async(&mut host_buffer, &stream)
.await
.unwrap();
}
let mut another_device_buffer = DeviceBuffer::<u32>::new(100, &stream).await;
unsafe {
another_device_buffer
.copy_from_async(&host_buffer, &stream)
.await
.unwrap();
}
let mut return_host_buffer = HostBuffer::<u32>::new(100).await;
unsafe {
another_device_buffer
.copy_to_async(&mut return_host_buffer, &stream)
.await
.unwrap();
}
stream.synchronize().await.unwrap();
assert_eq!(return_host_buffer.num_elements(), 100);
let return_data = return_host_buffer.to_vec();
assert_eq!(return_data.len(), 100);
assert!(return_data.into_iter().all(|v| v == 1_u32));
}
#[tokio::test]
async fn test_fill_with_byte() {
let stream = Stream::new().await.unwrap();
let mut device_buffer = DeviceBuffer::<u8>::new(4, &stream).await;
let mut host_buffer = HostBuffer::<u8>::new(4).await;
device_buffer.fill_with_byte(0xab, &stream).await.unwrap();
device_buffer
.copy_to(&mut host_buffer, &stream)
.await
.unwrap();
assert_eq!(host_buffer.to_vec(), &[0xab, 0xab, 0xab, 0xab]);
}
#[tokio::test]
#[should_panic]
async fn test_it_panics_when_copying_invalid_size() {
let stream = Stream::new().await.unwrap();
let device_buffer = DeviceBuffer::<u32>::new(101, &stream).await;
let mut host_buffer = HostBuffer::<u32>::new(100).await;
let _ = unsafe { device_buffer.copy_to_async(&mut host_buffer, &stream).await };
}
}