1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
use crate::ffi;
use crate::memory::DeviceBuffer;
use crate::runtime::Future;
use crate::stream::Stream;
type Result<T> = std::result::Result<T, crate::error::Error>;
/// A host buffer.
///
/// # Performance
///
/// Host buffers are managed by CUDA and can be used for pinned memory transfer. Pinned memory
/// transfer speeds are usually higher compared to paged memory transfers. Pinned memory buffers are
/// especially important for this crate because the runtime thread must do the least amount of CPU
/// work possible. Paged transfers do require the host to move data into a CUDA managed buffer first
/// (an extra memory copy) whilst pinned transfers do not.
pub struct HostBuffer<T: Copy + 'static> {
inner: ffi::memory::HostBuffer<T>,
}
impl<T: Copy + 'static> HostBuffer<T> {
/// Allocates memory on the host. This creates a pinned buffer. Any transfers to and from this
/// buffer automatically become pinned transfers, and will be much faster.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g32bd7a39135594788a542ae72217775c)
///
/// # Arguments
///
/// * `num_elements` - Number of elements to allocate.
pub async fn new(num_elements: usize) -> Self {
let inner = Future::new(move || ffi::memory::HostBuffer::<T>::new(num_elements)).await;
Self { inner }
}
/// Allocates memory on the host and copies the provided data into it.
///
/// This creates a pinned buffer. Any transfers to and from this buffer automatically become
/// pinned transfers, and will be much faster.
///
/// This is a convenience function that allows the caller to quickly put data into a host
/// buffer. It is roughly similar to `buffer.copy_from_slice(slice)`.
///
/// # Arguments
///
/// * `slice` - Data to copy into the new host buffer.
pub async fn from_slice(slice: &[T]) -> Self {
let mut this = Self::new(slice.len()).await;
this.copy_from_slice(slice);
this
}
/// Allocates memory on the host and copies the provided array into it.
///
/// This creates a pinned buffer. Any transfers to and from this buffer automatically become
/// pinned transfers, and will be much faster.
///
/// This is a convenience function that allows the caller to quickly put data into a host
/// buffer. It is roughly similar to `buffer.copy_from_array(slice)`.
///
/// # Arguments
///
/// * `array` - Array to copy into the new host buffer.
#[cfg(feature = "ndarray")]
pub async fn from_array<D: ndarray::Dimension>(array: &ndarray::ArrayView<'_, T, D>) -> Self {
let mut this = Self::new(array.len()).await;
this.copy_from_array(array);
this
}
/// Copies memory from the provided device buffer to this buffer.
///
/// This function synchronizes the stream implicitly.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// This function is guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Arguments
///
/// * `other` - Device buffer to copy from.
/// * `stream` - Stream to use.
#[inline(always)]
pub async fn copy_from(&mut self, other: &DeviceBuffer<T>, stream: &Stream) -> Result<()> {
other.copy_to(self, stream).await
}
/// Copies memory from the provided device buffer to this buffer.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// This function is guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Safety
///
/// This function is unsafe because the operation might not have completed when the function
/// returns, and thus the state of the buffer is undefined.
///
/// # Arguments
///
/// * `other` - Device buffer to copy from.
/// * `stream` - Stream to use.
#[inline(always)]
pub async unsafe fn copy_from_async(
&mut self,
other: &DeviceBuffer<T>,
stream: &Stream,
) -> Result<()> {
other.copy_to_async(self, stream).await
}
/// Copies memory from this buffer to the provided device buffer.
///
/// This function synchronizes the stream implicitly.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// This function is guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Arguments
///
/// * `other` - Device buffer to copy to.
/// * `stream` - Stream to use.
#[inline(always)]
pub async fn copy_to(&self, other: &mut DeviceBuffer<T>, stream: &Stream) -> Result<()> {
other.copy_from(self, stream).await
}
/// Copies memory from this buffer to the provided device buffer.
///
/// [CUDA documentation](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY.html#group__CUDART__MEMORY_1g85073372f776b4c4d5f89f7124b7bf79)
///
/// # Pinned transfer
///
/// This function is guaranteed to produce a pinned transfer on the runtime thread.
///
/// # Stream ordered semantics
///
/// This function uses stream ordered semantics. It can only be guaranteed to complete
/// sequentially relative to operations scheduled on the same stream or the default stream.
///
/// # Safety
///
/// This function is unsafe because the operation might not have completed when the function
/// returns, and thus the state of the buffer is undefined.
///
/// # Arguments
///
/// * `other` - Device buffer to copy to.
/// * `stream` - Stream to use.
#[inline(always)]
pub async unsafe fn copy_to_async(
&self,
other: &mut DeviceBuffer<T>,
stream: &Stream,
) -> Result<()> {
other.copy_from_async(self, stream).await
}
/// Copy data into the host buffer from a slice.
///
/// # Synchronization safety
///
/// This call is only synchronization-safe if all streams that have previously been used for
/// copy operations either from or to this host buffer have been synchronized, and no operations
/// have been scheduled since.
///
/// # Arguments
///
/// * `slice` - Data to copy into the new host buffer.
///
/// # Example
///
/// ```
/// # use async_cuda_core::HostBuffer;
/// # tokio_test::block_on(async {
/// let mut host_buffer = HostBuffer::<u8>::new(100).await;
/// let some_data = vec![10; 100];
/// host_buffer.copy_from_slice(&some_data);
/// # })
/// ```
#[inline(always)]
pub fn copy_from_slice(&mut self, slice: &[T]) {
self.inner.copy_from_slice(slice);
}
/// Copy array into the host buffer from a slice.
///
/// # Synchronization safety
///
/// This call is only synchronization-safe if all streams that have previously been used for
/// copy operations either from or to this host buffer have been synchronized, and no operations
/// have been scheduled since.
///
/// # Arguments
///
/// * `array` - Array to copy into the new host buffer.
#[cfg(feature = "ndarray")]
#[inline(always)]
pub fn copy_from_array<D: ndarray::Dimension>(&mut self, array: &ndarray::ArrayView<T, D>) {
self.inner.copy_from_array(array)
}
/// Copy the data to a [`Vec`] and return it.
#[inline(always)]
pub fn to_vec(&self) -> Vec<T> {
self.inner.to_vec()
}
/// Copy the data to an [`ndarray::Array`] and return it.
///
/// Function panics if provided shape does not match size of array.
///
/// # Arguments
///
/// * `shape` - Shape for array.
#[cfg(feature = "ndarray")]
#[inline(always)]
pub fn to_array_with_shape<D: ndarray::Dimension>(
&self,
shape: impl Into<ndarray::StrideShape<D>>,
) -> ndarray::Array<T, D> {
self.inner.to_array_with_shape::<D>(shape)
}
/// Get number of elements in buffer.
#[inline(always)]
pub fn num_elements(&self) -> usize {
self.inner.num_elements
}
/// Access the inner synchronous implementation of [`HostBuffer`].
#[inline(always)]
pub fn inner(&self) -> &ffi::memory::HostBuffer<T> {
&self.inner
}
/// Access the inner synchronous implementation of [`HostBuffer`].
#[inline(always)]
pub fn inner_mut(&mut self) -> &mut ffi::memory::HostBuffer<T> {
&mut self.inner
}
}
#[cfg(test)]
mod tests {
use super::*;
#[tokio::test]
async fn test_new() {
let buffer = HostBuffer::<u32>::new(100).await;
assert_eq!(buffer.num_elements(), 100);
assert_eq!(buffer.to_vec().len(), 100);
}
#[tokio::test]
async fn test_from_slice() {
let all_ones = vec![1_u32; 200];
let buffer = HostBuffer::from_slice(all_ones.as_slice()).await;
assert_eq!(buffer.num_elements(), 200);
let data = buffer.to_vec();
assert_eq!(data.len(), 200);
assert!(data.into_iter().all(|v| v == 1_u32));
}
#[tokio::test]
async fn test_copy() {
let stream = Stream::new().await.unwrap();
let all_ones = vec![1_u32; 100];
let host_buffer = HostBuffer::from_slice(all_ones.as_slice()).await;
let mut device_buffer = DeviceBuffer::<u32>::new(100, &stream).await;
unsafe {
host_buffer
.copy_to_async(&mut device_buffer, &stream)
.await
.unwrap();
}
let mut return_host_buffer = HostBuffer::<u32>::new(100).await;
unsafe {
return_host_buffer
.copy_from_async(&device_buffer, &stream)
.await
.unwrap();
}
stream.synchronize().await.unwrap();
assert_eq!(return_host_buffer.num_elements(), 100);
let return_data = return_host_buffer.to_vec();
assert_eq!(return_data.len(), 100);
assert!(return_data.into_iter().all(|v| v == 1_u32));
}
#[tokio::test]
#[should_panic]
async fn test_it_panics_when_copying_invalid_size() {
let stream = Stream::new().await.unwrap();
let host_buffer = HostBuffer::<u32>::new(100).await;
let mut device_buffer = DeviceBuffer::<u32>::new(101, &Stream::null()).await;
let _ = unsafe { host_buffer.copy_to_async(&mut device_buffer, &stream).await };
}
}