1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
use crate::art::{async_timeout, future::to, stream};
use crate::channel::{unbounded, UnboundedReceiver, UnboundedSender};
use async_lock::{Mutex, MutexGuard};
use futures::{stream::FuturesOrdered, Future, FutureExt};
use std::{fmt, time::Duration};
use tracing::warn;
#[cfg(not(async_executor_impl = "tokio"))]
use async_std::prelude::StreamExt;
#[cfg(async_executor_impl = "tokio")]
use tokio_stream::StreamExt;
/// A mutex that can register subscribers to be notified. This works in the same way as [`Mutex`], but has some additional functions:
///
/// [`Self::subscribe`] will return a [`Receiver`] which can be used to be notified of changes.
///
/// [`Self::notify_change_subscribers`] will notify all `Receiver` that are registered with the `subscribe` function.
#[derive(Default)]
pub struct SubscribableMutex<T: ?Sized> {
/// A list of subscribers of this mutex.
subscribers: Mutex<Vec<UnboundedSender<()>>>,
/// The inner mutex holding the value.
/// Note that because of the `T: ?Sized` constraint, this must be the last field in this struct.
mutex: Mutex<T>,
}
impl<T> SubscribableMutex<T> {
/// Create a new mutex with the value T
pub fn new(t: T) -> Self {
Self {
mutex: Mutex::new(t),
subscribers: Mutex::default(),
}
}
/// Acquires the mutex.
///
/// Returns a guard that releases the mutex when dropped.
///
/// Direct usage of this function may result in unintentional deadlocks.
/// Consider using one of the following functions instead:
/// - `modify` to edit the inner value.
/// - `set` to set the inner value.
/// - `compare_and_set` compare the inner value with a given value, and if they match, update the value to the second value.
/// - `copied` and `cloned` gets a copy or clone of the inner value
#[deprecated(note = "Consider using a different function instead")]
pub async fn lock(&self) -> MutexGuard<'_, T> {
self.mutex.lock().await
}
/// Notify the subscribers that a change has occured. Subscribers can be registered by calling [`Self::subscribe`].
///
/// Subscribers cannot be removed as they have no unique identifying information. Instead this function will simply remove all senders that fail to deliver their message.
pub async fn notify_change_subscribers(&self) {
let mut lock = self.subscribers.lock().await;
// We currently don't have a way to remove subscribers, so we'll remove them when they fail to deliver their message.
let mut idx_to_remove = Vec::new();
for (idx, sender) in lock.iter().enumerate() {
if sender.send(()).await.is_err() {
idx_to_remove.push(idx);
}
}
// Make sure to reverse `idx_to_remove`, or else the first index to remove will make the other indexes invalid
for idx in idx_to_remove.into_iter().rev() {
lock.remove(idx);
}
}
/// Create a [`Receiver`] that will be notified every time a thread calls [`Self::notify_change_subscribers`]
pub async fn subscribe(&self) -> UnboundedReceiver<()> {
let (sender, receiver) = unbounded();
self.subscribers.lock().await.push(sender);
receiver
}
/// Modify the internal value, then notify all subscribers that the value is updated.
pub async fn modify<F>(&self, cb: F)
where
F: FnOnce(&mut T),
{
let mut lock = self.mutex.lock().await;
cb(&mut *lock);
drop(lock);
self.notify_change_subscribers().await;
}
/// Set the new inner value, discarding the old ones. This will also notify all subscribers.
pub async fn set(&self, val: T) {
let mut lock = self.mutex.lock().await;
*lock = val;
drop(lock);
self.notify_change_subscribers().await;
}
/// Wait until `condition` returns `true`. Will block until then.
pub async fn wait_until<F>(&self, mut f: F)
where
F: FnMut(&T) -> bool,
{
let receiver = {
let lock = self.mutex.lock().await;
// Check if we already match the condition. If we do we don't have to subscribe at all.
if f(&*lock) {
return;
}
// note: don't drop the lock yet, we want to make sure we subscribe first
let receiver = self.subscribe().await;
drop(lock);
receiver
};
loop {
receiver
.recv()
.await
.expect("`SubscribableMutex::wait_until` was still running when it was dropped");
let lock = self.mutex.lock().await;
if f(&*lock) {
return;
}
}
}
/// Wait until `f` returns `true`. Signal on `ready_chan`
/// once has begun to listen
async fn wait_until_with_trigger_inner<'a, F>(
&self,
mut f: F,
ready_chan: futures::channel::oneshot::Sender<()>,
) where
F: FnMut(&T) -> bool + 'a,
{
let receiver = self.subscribe().await;
if ready_chan.send(()).is_err() {
warn!("unable to notify that channel is ready");
};
loop {
receiver
.recv()
.await
.expect("`SubscribableMutex::wait_until` was still running when it was dropped");
let lock = self.mutex.lock().await;
if f(&*lock) {
return;
}
drop(lock);
}
}
/// Wait until `f` returns `true`. Turns a stream with two ordered
/// events. The first event indicates that the stream is now listening for
/// the state change, and the second event indicates that `f` has become true
pub fn wait_until_with_trigger<'a, F>(
&'a self,
f: F,
) -> FuturesOrdered<impl Future<Output = ()> + 'a>
where
F: FnMut(&T) -> bool + 'a,
{
let (s, r) = futures::channel::oneshot::channel::<()>();
let mut result = FuturesOrdered::new();
let f1 = r.map(|_| ()).left_future();
let f2 = self.wait_until_with_trigger_inner(f, s).right_future();
result.push_back(f1);
result.push_back(f2);
result
}
/// Same functionality as `Self::wait_until_with_trigger`, except
/// with timeout `timeout` on both events in stream
pub fn wait_timeout_until_with_trigger<'a, F>(
&'a self,
timeout: Duration,
f: F,
) -> stream::to::Timeout<FuturesOrdered<impl Future<Output = ()> + 'a>>
where
F: FnMut(&T) -> bool + 'a,
{
self.wait_until_with_trigger(f).timeout(timeout)
}
/// Wait `timeout` until `f` returns `true`. Will return `Ok(())` if the function returned `true` before the time elapsed.
/// Notifies caller over `ready_chan` when has begun to listen for changes to the
/// internal state (locked within the [`Mutex`])
///
/// # Errors
///
/// Returns an error when this function timed out.
pub async fn wait_timeout_until<F>(&self, timeout: Duration, f: F) -> to::Result<()>
where
F: FnMut(&T) -> bool,
{
async_timeout(timeout, self.wait_until(f)).await
}
}
impl<T: PartialEq> SubscribableMutex<T> {
/// Compare the value of this mutex. If the value is equal to `compare`, it will be set to `set` and all subscribers will be notified
pub async fn compare_and_set(&self, compare: T, set: T) {
let mut lock = self.mutex.lock().await;
if *lock == compare {
*lock = set;
drop(lock);
self.notify_change_subscribers().await;
}
}
}
impl<T: Clone> SubscribableMutex<T> {
/// Return a clone of the current value of `T`
pub async fn cloned(&self) -> T {
self.mutex.lock().await.clone()
}
}
impl<T: Copy> SubscribableMutex<T> {
/// Return a copy of the current value of `T`
pub async fn copied(&self) -> T {
*self.mutex.lock().await
}
}
impl<T: fmt::Debug> fmt::Debug for SubscribableMutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
/// Helper struct to be shown when the inner mutex is locked.
struct Locked;
impl fmt::Debug for Locked {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
match self.mutex.try_lock() {
None => f
.debug_struct("SubscribableMutex")
.field("data", &Locked)
.finish(),
Some(guard) => f
.debug_struct("SubscribableMutex")
.field("data", &&*guard)
.finish(),
}
}
}
#[cfg(test)]
mod tests {
use super::SubscribableMutex;
use crate::art::{async_sleep, async_spawn, async_timeout};
use std::{sync::Arc, time::Duration};
#[cfg_attr(
async_executor_impl = "tokio",
tokio::test(flavor = "multi_thread", worker_threads = 2)
)]
#[cfg_attr(not(async_executor_impl = "tokio"), async_std::test)]
async fn test_wait_timeout_until() {
let mutex: Arc<SubscribableMutex<usize>> = Arc::default();
{
// inner loop finishes in 1.1s
let mutex = Arc::clone(&mutex);
async_spawn(async move {
for i in 0..=10 {
async_sleep(Duration::from_millis(100)).await;
mutex.set(i).await;
}
});
}
// wait for 2 seconds
let result = mutex
.wait_timeout_until(Duration::from_secs(2), |s| *s == 10)
.await;
assert_eq!(result, Ok(()));
assert_eq!(mutex.copied().await, 10);
}
#[cfg_attr(
async_executor_impl = "tokio",
tokio::test(flavor = "multi_thread", worker_threads = 2)
)]
#[cfg_attr(not(async_executor_impl = "tokio"), async_std::test)]
async fn test_wait_timeout_until_fail() {
let mutex: Arc<SubscribableMutex<usize>> = Arc::default();
{
let mutex = Arc::clone(&mutex);
async_spawn(async move {
// Never gets to 10
for i in 0..10 {
async_sleep(Duration::from_millis(100)).await;
mutex.set(i).await;
}
});
}
let result = mutex
.wait_timeout_until(Duration::from_secs(2), |s| *s == 10)
.await;
assert!(result.is_err());
assert_eq!(mutex.copied().await, 9);
}
#[cfg_attr(
async_executor_impl = "tokio",
tokio::test(flavor = "multi_thread", worker_threads = 2)
)]
#[cfg_attr(not(async_executor_impl = "tokio"), async_std::test)]
async fn test_compare_and_set() {
let mutex = SubscribableMutex::new(5usize);
let subscriber = mutex.subscribe().await;
assert_eq!(mutex.copied().await, 5);
// Update
mutex.compare_and_set(5, 10).await;
assert_eq!(mutex.copied().await, 10);
assert!(subscriber.try_recv().is_ok());
// No update
mutex.compare_and_set(5, 20).await;
assert_eq!(mutex.copied().await, 10);
assert!(subscriber.try_recv().is_err());
}
#[cfg_attr(
async_executor_impl = "tokio",
tokio::test(flavor = "multi_thread", worker_threads = 2)
)]
#[cfg_attr(not(async_executor_impl = "tokio"), async_std::test)]
async fn test_subscriber() {
let mutex = SubscribableMutex::new(5usize);
let subscriber = mutex.subscribe().await;
// No messages
assert!(subscriber.try_recv().is_err());
// sync message
mutex.set(10).await;
assert_eq!(subscriber.try_recv(), Ok(()));
// async message
mutex.set(20).await;
assert_eq!(
async_timeout(Duration::from_millis(10), subscriber.recv()).await,
Ok(Ok(()))
);
// Validate we have 1 subscriber
assert_eq!(mutex.subscribers.lock().await.len(), 1);
// Validate that if we drop the subscriber, and notify, it'll be removed
drop(subscriber);
mutex.notify_change_subscribers().await;
assert_eq!(mutex.subscribers.lock().await.len(), 0);
}
}