1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
//! [stdio]: `std::io`
//!
//! [stdstdout]: `std::io::Stdout`
//! [stdstderr]: `std::io::Stderr`
//! [stdstdin]: `std::io::Stdin`
//!
//! [stdstdoutlock]: `std::io::StdoutLock`
//! [stdstderrlock]: `std::io::StderrLock`
//! [stdstdinlock]: `std::io::StdinLock`
//!
//! [send-trait]: `core::marker::Send`
//!
//! [blocking-unblock]: `blocking::Unblock`
//! [fl-block-on]: `futures_lite::io::BlockOn`
//! [fl-io]: `futures_lite::io`
//!
//! [selfstdoutstruct]: `StdoutUnblock`
//! [selfstderrstruct]: `StderrUnblock`
//! [selfstdinstruct]: `StdinUnblock`
//!
//! [selfstdoutfn]: `stdout`
//! [selfstderrfn]: `stderr`
//! [selfstdinfn]: `stdin`
#![doc = include_str!("../README.md")]
use blocking::Unblock;
use core::pin::Pin;
use futures_lite::{io::BufReader, AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, Stream};
use std::{
io,
sync::{LazyLock, OnceLock},
};
mod sealed {
use blocking::Unblock;
use futures_lite::io::BufReader;
/// A [`std::io`] standard io stream.
pub trait StdioSealed {
/// Inner implementation on how, exactly, to actually unblock the stream.
///
/// Some streams require extra wrappers to properly unblock them while retaining
/// full efficiency - this provides that.
type Unblocked;
}
impl StdioSealed for std::io::Stdin {
/// We need [`BufReader`] here - [`Unblock`] contains no implementation of [`BufReader`]
/// because it would need to implement special operation modes. To get back the buffering,
/// we use a [`BufReader`] - the async form - outside it.
type Unblocked = BufReader<Unblock<Self>>;
}
impl StdioSealed for std::io::Stdout {
type Unblocked = Unblock<Self>;
}
impl StdioSealed for std::io::Stderr {
type Unblocked = Unblock<Self>;
}
}
/// Extension trait that provides easy access to the corresponding asynchronous types for the
/// streams in [`std::io`]
pub trait StdioExt: sealed::StdioSealed {
/// Handle to the async version of the standard io stream.
type Handle;
/// Lock on the async handle to this async-wrapped/unblocked standard io stream.
type Locked<'lt>;
/// Lock on the async handle to this async-wrapped/unblocked standard io stream, wrapped again
/// so that the synchronous traits from [`std::io`] can be used on it.
type LockedAndSync<'lt>;
/// Get the handle to the global asynchronous version of this standard io stream as provided by
/// [`async_blocking_stdio`][crate].
fn async_handle() -> Self::Handle
where
Self::Handle: Sized;
}
/// Prelude module - includes the [`super::StdioExt`] trait, mostly.
pub mod prelude {
pub use super::StdioExt as _;
}
type SeqMutex<T> = async_lock::Mutex<T>;
type SeqMutexGuard<'lt, T> = async_lock::MutexGuard<'lt, T>;
/// Inner storage type that is stored exactly once. The type parameter is actually the full
/// representation including any Unblock or BufReaders
#[derive(Debug)]
struct MutexUnblock<T: ?Sized>(pub SeqMutex<T>);
impl<T: ?Sized> MutexUnblock<T> {
/// Lock it in an async context
#[inline]
pub async fn lock(&self) -> MutexUnblockGuard<'_, T> {
MutexUnblockGuard::new(self.0.lock().await)
}
/// Lock it in a sync context - do not use in async context or risk deadlocks!
#[inline]
pub fn lock_blocking(&self) -> MutexUnblockGuard<'_, T> {
MutexUnblockGuard::new(self.0.lock_blocking())
}
/// Attempt to lock it if available
#[inline]
pub fn try_lock(&self) -> Option<MutexUnblockGuard<'_, T>> {
self.0.try_lock().map(MutexUnblockGuard::new)
}
}
/// Wrapper type for making an async-locked [`blocking::Unblock`] Stdio stream. Parameter is one of
/// the [`io::Stdout`]/[`io::Stderr`]/[`io::Stdin`] types plus any [`blocking::Unblock`] or other wrappers.
/// This holds a static reference to an internal shared mutex. Some things may need outer
/// BufRead/BufWrite attachments to make it match the equivalent sync trait impls - this is done as
/// much as possible to match the stdio inside the stdlib.
///
/// Unlike the [`std::io`] unlocked-handles, this does not implement the various [`futures_lite::io`]
/// traits. You need to use [`MutexUnblockHandle::lock`] or other locking methods to get access to a
/// handle which can be used with these traits. Unlike the Standard Library, these handles are not
/// re-entrant, which means that attempting to lock them in some inner future while the outer lock
/// is held will cause a deadlock.
///
/// An important note is that [`Unblock`] implements [`Unpin`] unconditionally. This makes it easy to
/// make generic implementations that will work nicely.
#[derive(Debug)]
pub struct MutexUnblockHandle<T: 'static + ?Sized>(&'static MutexUnblock<T>);
impl<T: ?Sized> MutexUnblockHandle<T> {
/// Locks this handle asynchronously.
#[inline]
pub async fn lock(&self) -> MutexUnblockGuard<'static, T> {
self.0.lock().await
}
/// Lock this handle, but produce something that implements the synchronous [`std::io`]
/// traits.
#[inline]
pub async fn lock_into_sync(&self) -> futures_lite::io::BlockOn<MutexUnblockGuard<'static, T>> {
futures_lite::io::BlockOn::new(self.lock().await)
}
/// Lock this handle in a sync context. Do not call in an async context or risk deadlocks!.
#[inline]
pub fn lock_blocking(&self) -> MutexUnblockGuard<'static, T> {
self.0.lock_blocking()
}
/// Lock this handle in a sync context, but producing something that implements the
/// synchronous [`std::io`] traits.
///
/// Do not call in an async context or risk deadlocks!.
#[inline]
pub fn lock_blocking_into_sync(
&self,
) -> futures_lite::io::BlockOn<MutexUnblockGuard<'static, T>> {
futures_lite::io::BlockOn::new(self.lock_blocking())
}
/// Attempt to lock this handle if you can
#[inline]
pub fn try_lock(&self) -> Option<MutexUnblockGuard<'static, T>> {
self.0.try_lock()
}
/// Attempt to lock this handle and wrap it in something that can be used with the synchronous
/// [`std::io`] traits.
#[inline]
pub fn try_lock_into_sync(
&self,
) -> Option<futures_lite::io::BlockOn<MutexUnblockGuard<'static, T>>> {
self.try_lock().map(futures_lite::io::BlockOn::new)
}
}
/// Handle to the globally-synchronised structure for async standard input.
pub type StdinUnblock = <io::Stdin as StdioExt>::Handle;
/// Handle to the globally-synchronised structure for async standard output.
pub type StdoutUnblock = <io::Stdout as StdioExt>::Handle;
/// Handle to the globally-synchronised structure for async standard error.
pub type StderrUnblock = <io::Stderr as StdioExt>::Handle;
pin_project_lite::pin_project! {
/// Wrapper type indicating a held async-locked [`blocking::Unblock`] Stdio stream. Parameter is
/// the [`io::Stdout`]/[`io::Stderr`]/[`io::Stdin`] types.
///
/// Using the various [`futures_lite::io`] traits on values of this type has all the same caveats
/// of using them on a [`blocking::Unblock`].
///
/// This is not re-entrant. This means that if you hold this lock, while waiting for another
/// access to the same asynchronous-friendly mutex to be locked (e.g. if you create a future by
/// calling an async function, that waits for the corresponding mutex to be unlocked, and then
/// wait for that future to complete while holding the lock), it will cause a deadlock.
///
/// This also deliberately does not expose any sort of `Deref` implementation, to avoid
/// exposing the internals of the type for public consumption.
#[derive(Debug)]
#[clippy::has_significant_drop]
pub struct MutexUnblockGuard<'lt, T: ?Sized> {
// This uses pin_project - the inner mutex guard needs to be pinned to access the internals in a
// pinned way.
#[pin] inner: SeqMutexGuard<'lt, T>
}
}
impl<'lt, T: ?Sized> MutexUnblockGuard<'lt, T> {
/// Internal construction function - not exposed as `From` because this is not a public API
#[inline]
fn new(inner: SeqMutexGuard<'lt, T>) -> Self {
Self { inner }
}
}
/// Lock on the global asynchronous accessor for Standard Input
///
/// This lock is not reentrant. If you hold this lock, and then wait for something else that needs
/// to wait to lock this, then it will cause a deadlock.
pub type StdinUnblockLock<'lt> = <std::io::Stdin as StdioExt>::Locked<'lt>;
/// Lock on the global asynchronous accessor for Standard Output
///
/// This lock is not reentrant. If you hold this lock, and then wait for something else that needs
/// to wait to lock this, then it will cause a deadlock.
pub type StdoutUnblockLock<'lt> = <std::io::Stdout as StdioExt>::Locked<'lt>;
/// Lock on the global asynchronous accessor for Standard Error
///
/// This lock is not reentrant. If you hold this lock, and then wait for something else that needs
/// to wait to lock this, then it will cause a deadlock.
pub type StderrUnblockLock<'lt> = <std::io::Stderr as StdioExt>::Locked<'lt>;
impl StdioExt for std::io::Stdout {
type Handle = MutexUnblockHandle<Self::Unblocked>;
type Locked<'lt> = MutexUnblockGuard<'lt, Self::Unblocked>;
type LockedAndSync<'lt> = futures_lite::io::BlockOn<Self::Locked<'static>>;
#[inline]
fn async_handle() -> Self::Handle
where
Self::Handle: Sized,
{
stdout()
}
}
impl StdioExt for std::io::Stderr {
type Handle = MutexUnblockHandle<Self::Unblocked>;
type Locked<'lt> = MutexUnblockGuard<'lt, Self::Unblocked>;
type LockedAndSync<'lt> = futures_lite::io::BlockOn<Self::Locked<'static>>;
#[inline]
fn async_handle() -> Self::Handle
where
Self::Handle: Sized,
{
stderr()
}
}
impl StdioExt for std::io::Stdin {
type Handle = MutexUnblockHandle<Self::Unblocked>;
type Locked<'lt> = MutexUnblockGuard<'lt, Self::Unblocked>;
type LockedAndSync<'lt> = futures_lite::io::BlockOn<Self::Locked<'static>>;
#[inline]
fn async_handle() -> Self::Handle
where
Self::Handle: Sized,
{
stdin()
}
}
pub(crate) mod cleanup {
use futures_lite::AsyncWriteExt as _;
use std::{io, sync};
use crate::{STDERR, STDOUT};
/// If [STDOUT] is initialised, this flushes the stream as a cleanup mechanism. This is important
/// because [Unblock] has an internal buffer separate from the inner stdout (which has a similar
/// cleanup mechanism).
///
/// This function ensures flushing occurs no more than once, even if called multiple times.
fn cleanup_flush_stdout() {
static FLUSH_ONCE: sync::Once = sync::Once::new();
// It's important we use .get() here rather than simple deref, because if we did that, and
// the program exited during initialization, it could cause infinite loops, or deadlock, or
// something like that (as then it would try to initialize again).
if let Some(init_stdout) = STDOUT.get() {
FLUSH_ONCE.call_once(|| {
let mut init_stdout = init_stdout.lock_blocking();
let _result = nolocal_block_on::block_on(async {
loop {
match init_stdout.flush().await {
Ok(()) => break Ok(()),
Err(e) if e.kind() == io::ErrorKind::Interrupted => continue,
Err(e) => break Err(e),
}
}
});
})
}
}
/// If [STDERR] is initialised, this flushes the stream as a cleanup mechanism. This is important
/// because [Unblock] has an internal buffer separate from the inner stderr. The inner stderr
/// itself is not buffered, though.
///
/// This function ensures flushing occurs no more than once, even if called multiple times.
fn cleanup_flush_stderr() {
static FLUSH_ONCE: sync::Once = sync::Once::new();
// It's important we use .get() here rather than simple deref, because if we did that, and
// the program exited during initialization, it could cause infinite loops, or deadlock, or
// something like that (as then it would try to initialize again).
if let Some(init_stderr) = STDERR.get() {
FLUSH_ONCE.call_once(|| {
let mut init_stderr = init_stderr.lock_blocking();
let _result = nolocal_block_on::block_on(async {
loop {
match init_stderr.flush().await {
Ok(()) => break Ok(()),
Err(e) if e.kind() == io::ErrorKind::Interrupted => continue,
Err(e) => break Err(e),
}
}
});
})
}
}
/// This invokes the [cleanup_flush_stdout] and [cleanup_flush_stderr] hooks in the correct order
/// (stderr is flushed first as it's likely to be most important).
pub(super) extern "C" fn cleanup() {
cleanup_flush_stderr();
cleanup_flush_stdout();
}
}
/// [`std::sync::LazyLock`] that registers the cleanup callbacks for [STDOUT] and [STDERR].
///
/// The actual value is a boolean indicating if it succeeded in registration or not.
static ASYNC_STDIO_CLEANUP_REGISTERED: LazyLock<bool> = LazyLock::new(|| {
// SAFETY - cleanup functions include internal synchronisation to ensure cleanup does not occur
// more than once, even if libc ends up doing weird things.
unsafe { libc::atexit(cleanup::cleanup) == 0 }
});
static STDOUT: OnceLock<MutexUnblock<Unblock<io::Stdout>>> = OnceLock::new();
/// Get the synchronised [`blocking::Unblock`]-ed stdout. A best-effort attempt is made to flush
/// the asynchronous standard output upon program exit (including things stored in the pipe it uses
/// to do async things).
///
/// The returned handle cannot be locked in a re-entrant fashion while the lock is held, within a
/// future/task that is being waited for. If you try, it will cause a deadlock.
#[must_use]
pub fn stdout() -> StdoutUnblock {
MutexUnblockHandle(STDOUT.get_or_init(|| {
let r = MutexUnblock(SeqMutex::new(Unblock::new(io::stdout())));
if !(*ASYNC_STDIO_CLEANUP_REGISTERED) {
panic!("could not register async stdio cleanup functions")
}
r
}))
}
static STDERR: OnceLock<MutexUnblock<Unblock<io::Stderr>>> = OnceLock::new();
/// Get the synchronised [`blocking::Unblock`]-ed stderr. A best-effort attempt is made to flush
/// the asynchronous standard error upon program exit (including things stored in the pipe it uses
/// to do async things).
///
/// The returned handle cannot be locked in a re-entrant fashion while the lock is held, within a
/// future/task that is being waited for. If you try, it will cause a deadlock.
#[must_use]
pub fn stderr() -> StderrUnblock {
MutexUnblockHandle(STDERR.get_or_init(|| {
let r = MutexUnblock(SeqMutex::new(Unblock::new(io::stderr())));
if !(*ASYNC_STDIO_CLEANUP_REGISTERED) {
panic!("could not register async stdio cleanup functions");
}
r
}))
}
static STDIN: OnceLock<MutexUnblock<BufReader<Unblock<io::Stdin>>>> = OnceLock::new();
/// Get the synchronised [`blocking::Unblock`]-ed stdin
///
/// The returned handle cannot be locked in a re-entrant fashion while the lock is held, within a
/// future/task that is being waited for. If you try, it will cause a deadlock.
#[must_use]
pub fn stdin() -> StdinUnblock {
MutexUnblockHandle(
STDIN
.get_or_init(|| MutexUnblock(SeqMutex::new(BufReader::new(Unblock::new(io::stdin()))))),
)
}
impl<T: ?Sized> MutexUnblockGuard<'_, T> {
/// Get the pinned form of the stored, synchronised value from this guard structure.
///
/// This is not public, such as to avoid leaking `T`
#[inline]
pub(crate) fn inner_pinned<'s>(self: Pin<&'s mut Self>) -> Pin<&mut T>
where
T: Unpin,
{
Pin::new(self.project().inner.get_mut())
}
}
// MANUAL LOCK IMPLS
impl<T: AsyncRead + Unpin + ?Sized> AsyncRead for MutexUnblockGuard<'_, T> {
#[inline]
fn poll_read(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut [u8],
) -> std::task::Poll<io::Result<usize>> {
self.inner_pinned().poll_read(cx, buf)
}
#[inline]
fn poll_read_vectored(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
bufs: &mut [io::IoSliceMut<'_>],
) -> std::task::Poll<io::Result<usize>> {
self.inner_pinned().poll_read_vectored(cx, bufs)
}
}
impl<T: AsyncBufRead + Unpin + ?Sized> AsyncBufRead for MutexUnblockGuard<'_, T> {
#[inline]
fn poll_fill_buf(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<io::Result<&[u8]>> {
self.inner_pinned().poll_fill_buf(cx)
}
#[inline]
fn consume(self: Pin<&mut Self>, amt: usize) {
self.inner_pinned().consume(amt)
}
}
impl<T: AsyncSeek + Unpin + ?Sized> AsyncSeek for MutexUnblockGuard<'_, T> {
#[inline]
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
pos: io::SeekFrom,
) -> std::task::Poll<io::Result<u64>> {
self.inner_pinned().poll_seek(cx, pos)
}
}
impl<T: AsyncWrite + Unpin + ?Sized> AsyncWrite for MutexUnblockGuard<'_, T> {
#[inline]
fn poll_write(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<io::Result<usize>> {
self.inner_pinned().poll_write(cx, buf)
}
#[inline]
fn poll_flush(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<io::Result<()>> {
self.inner_pinned().poll_flush(cx)
}
#[inline]
fn poll_close(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<io::Result<()>> {
self.inner_pinned().poll_close(cx)
}
#[inline]
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
bufs: &[io::IoSlice<'_>],
) -> std::task::Poll<io::Result<usize>> {
self.inner_pinned().poll_write_vectored(cx, bufs)
}
}
impl<T: Stream + Unpin + ?Sized> Stream for MutexUnblockGuard<'_, T> {
type Item = T::Item;
#[inline]
fn poll_next(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
self.inner_pinned().poll_next(cx)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
// async-blocking-stdio - std::io::std{in(), out(), err()}, but async
// Copyright (C) 2024 Matti Bryce <mattibryce at protonmail dot com>
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.