async_arp/
client.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
use afpacket::tokio::RawPacketStream;
use pnet::{
    packet::{
        arp::{Arp, ArpHardwareTypes, ArpOperations, MutableArpPacket},
        ethernet::{EtherTypes, MutableEthernetPacket},
        Packet,
    },
    util::MacAddr,
};

use std::{net::Ipv4Addr, sync::Arc, time::Duration};
use tokio::task::JoinHandle;
use tokio::{
    io::AsyncWriteExt,
    sync::{Mutex, Notify},
};

use tokio_util::sync::CancellationToken;

use crate::{caching::ArpCache, probe::ProbeInput, request::RequestOutcome};
use crate::{constants::IP_V4_LEN, notification::NotificationHandler};
use crate::{
    constants::{ARP_PACK_LEN, ETH_PACK_LEN, MAC_ADDR_LEN},
    request::RequestInput,
};
use crate::{
    error::{Error, Result},
    probe::ProbeOutcome,
};
use crate::{probe::ProbeStatus, response::Listener};

pub struct ClientConfig {
    pub interface_name: String,
    pub response_timeout: Duration,
    pub cache_timeout: Duration,
}

pub struct ClientConfigBuilder {
    interface_name: String,
    response_timeout: Option<Duration>,
    cache_timeout: Option<Duration>,
}

impl ClientConfigBuilder {
    pub fn new(interface_name: &str) -> Self {
        Self {
            interface_name: interface_name.into(),
            response_timeout: Some(Duration::from_secs(1)),
            cache_timeout: Some(Duration::from_secs(60)),
        }
    }

    pub fn with_response_timeout(mut self, timeout: Duration) -> Self {
        self.response_timeout = Some(timeout);
        self
    }

    pub fn with_cache_timeout(mut self, timeout: Duration) -> Self {
        self.cache_timeout = Some(timeout);
        self
    }

    pub fn build(self) -> ClientConfig {
        ClientConfig {
            interface_name: self.interface_name,
            cache_timeout: self.cache_timeout.unwrap(),
            response_timeout: self.response_timeout.unwrap(),
        }
    }
}

/// A client for handling ARP (Address Resolution Protocol) requests and probes.
///
/// The `Client` is responsible for sending ARP requests, caching responses,
/// and handling notifications. It uses a raw packet stream for network communication.
///
/// # Example
/// ```no_run
/// let config = ClientConfig {
///     interface_name: "eth0".to_string(),
///     response_timeout: Duration::from_secs(2),
///     cache_timeout: Duration::from_secs(60),
/// };
///
/// let client = Client::new(config).expect("Failed to create ARP client");
/// ```
pub struct Client {
    response_timeout: Duration,
    stream: Mutex<RawPacketStream>,
    cache: Arc<ArpCache>,

    notification_handler: Arc<NotificationHandler>,
    _task_spawner: BackgroundTaskSpawner,
}

impl Client {
    /// Creates a new `Client` with the given configuration.
    ///
    /// This function initializes a raw packet stream, binds it to the specified
    /// network interface, and sets up caching and background tasks for listening
    /// to ARP responses.
    ///
    /// # Errors
    /// Returns an error if the packet stream cannot be created or if binding to
    /// the specified network interface fails.
    pub fn new(config: ClientConfig) -> Result<Self> {
        let mut stream = RawPacketStream::new().map_err(|err| {
            Error::Opaque(format!("failed to create packet stream, reason: {}", err).into())
        })?;
        stream.bind(&config.interface_name).map_err(|err| {
            Error::Opaque(format!("failed to bind interface to stream, reason {}", err).into())
        })?;

        let notification_handler = Arc::new(NotificationHandler::new());
        let cache = Arc::new(ArpCache::new(
            config.cache_timeout,
            Arc::clone(&notification_handler),
        ));

        let mut task_spawner = BackgroundTaskSpawner::new();
        task_spawner.spawn(Listener::new(stream.clone(), Arc::clone(&cache)));

        Ok(Self {
            response_timeout: config.response_timeout,
            stream: Mutex::new(stream),
            cache,
            notification_handler,
            _task_spawner: task_spawner,
        })
    }

    /// Probes for the presence of a device at the given IP address.
    ///
    /// This function sends an ARP request to determine whether an IP address
    /// is occupied. It returns a `ProbeOutcome`, indicating whether the address
    /// is in use.
    ///
    /// # Example
    /// ```no_run
    /// let probe_input = ProbeInputBuilder::new()
    ///     .with_sender_mac(MacAddr::new([0x00, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E]))
    ///     .with_target_ip(Ipv4Addr::new(192, 168, 1, 1))
    ///     .build()
    ///     .expect("Failed to build probe input");
    ///
    /// let outcome = client.probe(probe_input).await?;
    ///
    /// match outcome.status {
    ///     ProbeStatus::Occupied => println!("IP is in use"),
    ///     ProbeStatus::Free => println!("IP is available"),
    /// }
    /// ```
    ///
    /// # Errors
    /// Returns an error if sending the ARP request fails.
    pub async fn probe(&self, input: ProbeInput) -> Result<ProbeOutcome> {
        let input = RequestInput {
            sender_ip: Ipv4Addr::UNSPECIFIED,
            sender_mac: input.sender_mac,
            target_ip: input.target_ip,
            target_mac: MacAddr::zero(),
        };

        match self.request(input).await {
            Ok(_) => Ok(ProbeOutcome::new(ProbeStatus::Occupied, input.target_ip)),
            Err(Error::ResponseTimeout) => {
                Ok(ProbeOutcome::new(ProbeStatus::Free, input.target_ip))
            }
            Err(err) => Err(err),
        }
    }

    /// Sends an ARP request and waits for a response.
    ///
    /// If the requested IP is already cached, the cached response is returned immediately.
    /// Otherwise, a new ARP request is sent, and the client waits for a response within
    /// the configured timeout period.
    ///
    /// # Example
    /// ```no_run
    /// let request_input = RequestInputBuilder::new()
    ///     .with_sender_ip(Ipv4Addr::new(192, 168, 1, 100))
    ///     .with_sender_mac(MacAddr::new([0x00, 0x1A, 0x2B, 0x3C, 0x4D, 0x5E]))
    ///     .with_target_ip(Ipv4Addr::new(192, 168, 1, 1))
    ///     .with_target_mac(MacAddr::zero())
    ///     .build()
    ///     .expect("Failed to build request input");
    ///
    /// let outcome = client.request(request_input).await?;
    ///
    /// println!("Received response: {:?}", outcome);
    /// ```
    ///
    /// # Errors
    /// Returns an error if sending the request fails or if no response is received
    /// within the timeout period.
    pub async fn request(&self, input: RequestInput) -> Result<RequestOutcome> {
        if let Some(cached) = self.cache.get(&input.target_ip) {
            return Ok(RequestOutcome::new(input, cached));
        }
        let mut eth_buf = [0; ETH_PACK_LEN];
        Self::fill_packet_buf(&mut eth_buf, &input);
        let notifier = self
            .notification_handler
            .register_notifier(input.target_ip)
            .await;
        self.stream
            .lock()
            .await
            .write_all(&eth_buf)
            .await
            .map_err(|err| {
                Error::Opaque(format!("failed to send request, reason: {}", err).into())
            })?;

        let response = tokio::time::timeout(
            self.response_timeout,
            self.await_response(notifier, &input.target_ip),
        )
        .await
        .map_err(|_| Error::ResponseTimeout)?;
        Ok(RequestOutcome::new(input, response))
    }

    fn fill_packet_buf(eth_buf: &mut [u8], input: &RequestInput) {
        let mut eth_packet = MutableEthernetPacket::new(eth_buf).unwrap();
        eth_packet.set_destination(MacAddr::broadcast());
        eth_packet.set_source(input.sender_mac);
        eth_packet.set_ethertype(EtherTypes::Arp);

        let mut arp_buf = [0; ARP_PACK_LEN];
        let mut arp_packet = MutableArpPacket::new(&mut arp_buf).unwrap();
        arp_packet.set_hardware_type(ArpHardwareTypes::Ethernet);
        arp_packet.set_protocol_type(EtherTypes::Ipv4);
        arp_packet.set_hw_addr_len(MAC_ADDR_LEN);
        arp_packet.set_proto_addr_len(IP_V4_LEN);
        arp_packet.set_operation(ArpOperations::Request);
        arp_packet.set_sender_hw_addr(input.sender_mac);
        arp_packet.set_sender_proto_addr(input.sender_ip);
        arp_packet.set_target_hw_addr(input.target_mac);
        arp_packet.set_target_proto_addr(input.target_ip);

        eth_packet.set_payload(arp_packet.packet());
    }

    async fn await_response(&self, notifier: Arc<Notify>, target_ip: &Ipv4Addr) -> Arp {
        loop {
            notifier.notified().await;
            {
                if let Some(packet) = self.cache.get(target_ip) {
                    return packet;
                }
            }
        }
    }
}

struct BackgroundTaskSpawner {
    token: CancellationToken,
    handle: Option<JoinHandle<()>>,
}

impl BackgroundTaskSpawner {
    fn new() -> Self {
        Self {
            token: CancellationToken::new(),
            handle: None,
        }
    }

    fn spawn(&mut self, mut listener: Listener) {
        let token = self.token.clone();
        let handle = tokio::task::spawn(async move {
            tokio::select! {
                _ = listener.listen() => {

                },
                _ = token.cancelled() => {
                }
            }
        });
        self.handle = Some(handle);
    }
}

impl Drop for BackgroundTaskSpawner {
    fn drop(&mut self) {
        if self.handle.is_some() {
            self.token.cancel();
        }
    }
}

#[cfg(test)]
mod tests {
    use std::{
        net::Ipv4Addr,
        path::PathBuf,
        process::Command,
        sync::{Arc, Once},
    };

    use crate::{
        client::{Client, ClientConfigBuilder, ProbeStatus},
        constants::{ARP_PACK_LEN, ETH_PACK_LEN, IP_V4_LEN, MAC_ADDR_LEN},
        probe::ProbeInputBuilder,
        response::parse_arp_packet,
    };
    use afpacket::tokio::RawPacketStream;
    use ipnet::Ipv4Net;
    use pnet::{
        datalink,
        packet::{
            arp::{ArpHardwareTypes, ArpOperations, MutableArpPacket},
            ethernet::{EtherTypes, MutableEthernetPacket},
            Packet,
        },
        util::MacAddr,
    };
    use tokio::io::{AsyncReadExt, AsyncWriteExt};

    type Error = Box<dyn std::error::Error + Send + Sync + 'static>;
    type Result<T> = std::result::Result<T, Error>;

    struct Server {
        mac: MacAddr,
        stream: RawPacketStream,
        net: Ipv4Net,
    }

    impl Server {
        fn new(interface_name: &str, net: Ipv4Net) -> Result<Self> {
            let interfaces = datalink::interfaces();
            let interface = interfaces
                .into_iter()
                .find(|iface| iface.name == interface_name)
                .ok_or_else(|| format!("interface {} not found", interface_name))?;
            let mut stream = RawPacketStream::new()?;
            stream.bind(interface_name)?;
            Ok(Self {
                mac: interface.mac.unwrap(),
                stream,
                net,
            })
        }

        async fn serve(&mut self) -> Result<()> {
            let mut request_buf = [0; ETH_PACK_LEN];
            let mut arp_buf = [0; ARP_PACK_LEN];
            let mut response_buf = [0; ETH_PACK_LEN];
            while let Ok(read_bytes) = self.stream.read(&mut request_buf).await {
                if let Ok(request) = parse_arp_packet(&request_buf[..read_bytes]) {
                    if self.net.contains(&request.target_proto_addr) {
                        let mut arp_response = MutableArpPacket::new(&mut arp_buf).unwrap();
                        arp_response.set_hardware_type(ArpHardwareTypes::Ethernet);
                        arp_response.set_protocol_type(EtherTypes::Ipv4);
                        arp_response.set_hw_addr_len(MAC_ADDR_LEN);
                        arp_response.set_proto_addr_len(IP_V4_LEN);
                        arp_response.set_operation(ArpOperations::Reply);

                        arp_response.set_sender_proto_addr(request.target_proto_addr);
                        arp_response.set_sender_hw_addr(self.mac);
                        arp_response.set_target_proto_addr(request.sender_proto_addr);
                        arp_response.set_target_hw_addr(request.sender_hw_addr);

                        let mut eth_response = MutableEthernetPacket::new(&mut response_buf)
                            .ok_or("failed to create Ethernet frame")?;
                        eth_response.set_ethertype(EtherTypes::Arp);
                        eth_response.set_destination(request.sender_hw_addr);
                        eth_response.set_source(self.mac);
                        eth_response.set_payload(arp_response.packet());

                        self.stream.write_all(eth_response.packet()).await?;
                    }
                }
            }
            Ok(())
        }
    }

    static INIT: Once = Once::new();

    fn init_dummy_interface() {
        const SCRIPT_PATH: &str = concat!(
            env!("CARGO_MANIFEST_DIR"),
            "/scripts/setup_dummy_interface.sh"
        );
        Command::new("sudo")
            .arg(SCRIPT_PATH)
            .status()
            .expect("failed to setup dummy test interface");
    }

    fn set_cap_net_raw_capabilities(test_bin: PathBuf) {
        Command::new("sudo")
            .arg("setcap")
            .arg("cap_net_raw=eip")
            .arg(test_bin)
            .status()
            .expect("failed to set net raw capabilities");
    }

    #[tokio::test]
    async fn test_detection() {
        INIT.call_once(init_dummy_interface);
        // not ideal, capabilities are not affected during first test run
        let test_bin_path = std::env::current_exe().expect("Failed to get test executable");
        set_cap_net_raw_capabilities(test_bin_path);

        const INTERFACE_NAME: &str = "dummy0";

        tokio::spawn(async move {
            let net = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 25).unwrap();
            let mut server = Server::new(INTERFACE_NAME, net).unwrap();
            server.serve().await.unwrap();
        });
        {
            let client =
                Arc::new(Client::new(ClientConfigBuilder::new(INTERFACE_NAME).build()).unwrap());

            let sender_mac = datalink::interfaces()
                .into_iter()
                .find(|iface| iface.name == INTERFACE_NAME)
                .ok_or_else(|| format!("interface {} not found", INTERFACE_NAME))
                .unwrap()
                .mac
                .ok_or("interface does not have mac address")
                .unwrap();

            let future_probes: Vec<_> = (0..128)
                .map(|ip_d| {
                    let client_clone = client.clone();
                    async move {
                        let builder = ProbeInputBuilder::new()
                            .with_sender_mac(sender_mac)
                            .with_target_ip(Ipv4Addr::new(10, 1, 1, ip_d as u8));
                        client_clone.probe(builder.build().unwrap()).await.unwrap()
                    }
                })
                .collect();

            let outcomes = futures::future::join_all(future_probes).await;
            for outcome in outcomes {
                assert_eq!(outcome.status, ProbeStatus::Occupied);
            }

            let future_probes: Vec<_> = (128..=255)
                .map(|ip_d| {
                    let client_clone = client.clone();
                    async move {
                        let builder = ProbeInputBuilder::new()
                            .with_sender_mac(sender_mac)
                            .with_target_ip(Ipv4Addr::new(10, 1, 1, ip_d as u8));
                        client_clone.probe(builder.build().unwrap()).await.unwrap()
                    }
                })
                .collect();

            let outcomes = futures::future::join_all(future_probes).await;
            for outcome in outcomes {
                assert_eq!(outcome.status, ProbeStatus::Free);
            }
        }
    }
}