1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
//! Astro-float (astronomically large floating point numbers) is a library that implements arbitrary precision floating point numbers.
//!
//! ## Introduction
//!
//! **Numbers**
//!
//!
//! The number is defined by the data type `BigFloat`.
//! Each finite number consists of an array of words representing the mantissa, exponent, and sign.
//! `BigFloat` can also be `Inf` (positive infinity), `-Inf` (negative infinity) or `NaN` (not-a-number).
//!
//!
//! `BigFloat` creation operations take bit precision as an argument.
//! Precision is always rounded up to the nearest word.
//! For example, if you specify a precision of 1 bit, then it will be converted to 64 bits when one word has a size of 64 bits.
//! If you specify a precision of 65 bits, the resulting precision will be 128 bits (2 words), and so on.
//!
//!
//! Most operations take the rounding mode as an argument.
//! The operation will typically internally result in a number with more precision than necessary.
//! Before the result is returned to the user, the result is rounded according to the rounding mode and reduced to the expected precision.
//!
//!
//! `BigFloat` can be parsed from a string and formatted into a string using binary, octal, decimal, or hexadecimal representation.
//!
//!
//! Numbers can be subnormal. Usually any number is normalized: the most significant bit of the mantissa is set to 1.
//! If the result of the operation has the smallest possible exponent, then normalization cannot be performed,
//! and some significant bits of the mantissa may become 0. This allows for a more gradual transition to zero.
//!
//! **Error handling**
//!
//! In case of an error, such as memory allocation error, `BigFloat` takes the value `NaN`.
//! `BigFloat::get_err()` can be used to get the associated error in this situation.
//!
//! **BigFloatNumber**
//!
//! `BigFloatNumber` is a data type provided for backward compatibility.
//! It represents the finite number, i.e. it has mantissa, sign, and exponent, and can't be `Inf` or `NaN`.
//! `BigFloat` uses `BigFloatNumber` internally. It is advisable to use `BigFloat` instead of `BigFloatNumber`.
//!
//! **Constants**
//!
//! Constants such as pi or the Euler number have arbitrary precision and are evaluated lazily and then cached in the constants cache.
//! Some functions expect constants cache as parameter because the library does not maintain global state.
//!
//!
//! ## Examples
//!
//! ``` rust
//! use astro_float::BigFloat;
//! use astro_float::Consts;
//! use astro_float::RoundingMode;
//!
//! // Precision with some space for error.
//! let p = 1024 + 8;
//!
//! // Rounding of all operations
//! let rm = RoundingMode::ToEven;
//!
//! // Initialize mathematical constants cache
//! let mut cc = Consts::new().unwrap();
//!
//! // Compute pi: pi = 6*arctan(1/sqrt(3))
//! let six = BigFloat::from_word(6, 1);
//! let three = BigFloat::from_word(3, p);
//!
//! let n = three.sqrt(p, rm);
//! let n = n.reciprocal(p, rm);
//! let n = n.atan(p, rm, &mut cc);
//! let mut pi = six.mul(&n, p, rm);
//!
//! // Reduce precision to 1024
//! pi.set_precision(1024, rm).expect("Precision updated");
//!
//! // Use library's constant for verifying the result
//! let pi_lib = cc.pi(1024, rm).unwrap().into();
//!
//! // Compare computed constant with library's constant
//! assert_eq!(pi.cmp(&pi_lib), Some(0));
//!
//! // Print using decimal radix.
//! println!("{}", pi);
//!
//! // output: 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458699748e+0
//! ```
//!
//! ## no_std
//!
//! The library can work without the standard library provided there is a memory allocator. The standard library dependency is activated by the feature `std`.
//! The feature `std` is active by default and must be excluded when specifying dependency, e.g.:
//!
//! ``` toml
//! [dependencies]
//! astro-float = { version = "0.4.0", default-features = false }
//! ```
//!
#![allow(deprecated)] // remove when BigFloatNumber is not public
#![deny(missing_docs)]
#![deny(clippy::suspicious)]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(not(feature = "std"))]
extern crate alloc;
mod common;
mod conv;
//mod ctx;
mod defs;
mod ext;
mod for_3rd;
mod mantissa;
mod num;
mod ops;
mod parser;
mod strop;
//pub use crate::ctx::with_consts;
//pub use crate::ctx::with_precision;
//pub use crate::ctx::with_rounding_mode;
//pub use crate::ctx::with_value;
//pub use crate::ctx::Context;
pub use crate::defs::Error;
pub use crate::defs::Exponent;
pub use crate::defs::Radix;
pub use crate::defs::RoundingMode;
pub use crate::defs::Sign;
pub use crate::defs::Word;
pub use crate::ext::BigFloat;
pub use crate::ext::INF_NEG;
pub use crate::ext::INF_POS;
pub use crate::ext::NAN;
pub use crate::num::BigFloatNumber;
pub use crate::ops::consts::Consts;
pub use crate::defs::EXPONENT_MAX;
pub use crate::defs::EXPONENT_MIN;
pub use crate::defs::WORD_BIT_SIZE;
#[cfg(test)]
mod tests {
#[test]
fn test_bigfloat() {
use crate::BigFloat;
use crate::Consts;
use crate::RoundingMode;
// Precision with some space for error.
let p = 1024 + 8;
// Rounding of all operations
let rm = RoundingMode::ToEven;
// Initialize mathematical constants cache
let mut cc = Consts::new().unwrap();
// Compute pi: pi = 6*arctan(1/sqrt(3))
let six = BigFloat::from_word(6, 1);
let three = BigFloat::from_word(3, p);
let n = three.sqrt(p, rm);
let n = n.reciprocal(p, rm);
let n = n.atan(p, rm, &mut cc);
let mut pi = six.mul(&n, p, rm);
// Reduce precision to 1024
pi.set_precision(1024, rm).expect("Precision updated");
// Use library's constant for verifying the result
let pi_lib = cc.pi(1024, rm).unwrap().into();
// Compare computed constant with library's constant
assert_eq!(pi.cmp(&pi_lib), Some(0));
// Print using decimal radix.
//println!("{}", pi);
}
}