1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! Hyperbolic arctangent.

use crate::common::consts::ONE;
use crate::common::consts::TWO;
use crate::common::util::get_add_cost;
use crate::common::util::round_p;
use crate::defs::Error;
use crate::defs::RoundingMode;
use crate::defs::EXPONENT_MIN;
use crate::num::BigFloatNumber;
use crate::ops::consts::Consts;
use crate::ops::series::series_run;
use crate::ops::series::PolycoeffGen;

// Polynomial coefficient generator.
struct AtanhPolycoeffGen {
    acc: BigFloatNumber,
    iter_cost: usize,
}

impl AtanhPolycoeffGen {
    fn new(_p: usize) -> Result<Self, Error> {
        let acc = BigFloatNumber::from_word(1, 1)?;

        let iter_cost = get_add_cost(acc.get_mantissa_max_bit_len());

        Ok(AtanhPolycoeffGen { acc, iter_cost })
    }
}

impl PolycoeffGen for AtanhPolycoeffGen {
    fn next(&mut self, rm: RoundingMode) -> Result<&BigFloatNumber, Error> {
        self.acc = self
            .acc
            .add(&TWO, self.acc.get_mantissa_max_bit_len(), rm)?;

        Ok(&self.acc)
    }

    #[inline]
    fn get_iter_cost(&self) -> usize {
        self.iter_cost
    }

    #[inline]
    fn is_div(&self) -> bool {
        true
    }
}

impl BigFloatNumber {
    /// Computes the hyperbolic arctangent of a number with precision `p`. The result is rounded using the rounding mode `rm`.
    /// This function requires constants cache `cc` for computing the result.
    /// Precision is rounded upwards to the word size.
    ///
    /// ## Errors
    ///
    ///  - ExponentOverflow: the result is too large.
    ///  - MemoryAllocation: failed to allocate memory.
    ///  - InvalidArgument: when |`self`| > 1, or the precision is incorrect.
    pub fn atanh(&self, p: usize, rm: RoundingMode, cc: &mut Consts) -> Result<Self, Error> {
        if self.get_exponent() == 1 && self.abs_cmp(&ONE) == 0 {
            return Err(Error::ExponentOverflow(self.get_sign()));
        }

        let p = round_p(p);

        let additional_prec = p / 6;

        // TODO: tune threshold for choosing between series computation and computation using ln
        if self.get_exponent() as isize >= -(additional_prec as isize) {
            // 0.5 * ln((1 + x) / (1 - x))

            let mut x = self.clone()?;

            let p_x = p + additional_prec + 3;
            x.set_precision(p_x, RoundingMode::None)?;

            let d1 = ONE.add(&x, p_x, RoundingMode::None)?;
            let d2 = ONE.sub(&x, p_x, RoundingMode::None)?;

            if d2.is_zero() {
                return Err(Error::ExponentOverflow(self.get_sign()));
            }

            let d3 = d1.div(&d2, p_x, RoundingMode::None)?;

            let mut ret = d3.ln(p_x, RoundingMode::None, cc)?;

            ret.set_precision(p, rm)?;

            if ret.get_exponent() == EXPONENT_MIN {
                ret.subnormalize(ret.get_exponent() as isize - 1, rm);
            } else {
                ret.set_exponent(ret.get_exponent() - 1);
            }

            Ok(ret)
        } else {
            // series

            let mut x = self.clone()?;

            let p_x = p + 1;
            x.set_precision(p_x, rm)?;

            let mut polycoeff_gen = AtanhPolycoeffGen::new(p_x)?;

            let x_step = x.mul(&x, p_x, rm)?; // x^2
            let x_first = x.mul(&x_step, p_x, rm)?; // x^3

            let mut ret = series_run(x, x_first, x_step, 1, &mut polycoeff_gen, rm)?;

            ret.set_precision(p, rm)?;

            Ok(ret)
        }
    }
}

#[cfg(test)]
mod tests {

    use crate::{common::util::random_subnormal, Sign};

    use super::*;

    #[test]
    fn test_atanh() {
        let p = 320;
        let mut cc = Consts::new().unwrap();
        let rm = RoundingMode::ToEven;
        let mut n1 = BigFloatNumber::from_word(1, p).unwrap();
        n1.set_exponent(-34);
        let _n2 = n1.atanh(p, rm, &mut cc).unwrap();
        //println!("{:?}", n2.format(crate::Radix::Bin, rm).unwrap());

        let mut n1 = BigFloatNumber::from_word(1, p).unwrap();
        n1.set_exponent(0);
        let _n2 = n1.atanh(p, rm, &mut cc).unwrap();
        //println!("{:?}", n2.format(crate::Radix::Bin, rm).unwrap());

        // asymptotic & extrema testing
        let p = 640;
        let n1 = BigFloatNumber::parse("F.FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8EE51946EC87F86A7E6DA4D8C6ED8DFAE4D7B7FF0B8356E63EF277C97F2E2111AECCBE8F2DF4EFE48F618B1E75C7CBBDCFCE32604DE9F240_e-1", crate::Radix::Hex, p, RoundingMode::None).unwrap();
        let n2 = n1.atanh(p, rm, &mut cc).unwrap();
        let n3 = BigFloatNumber::parse("4.34C10E83FA43CA88E0A3A0125990D4B8BC2CF39E0695A6B9F73DE8F43C00767B966992C0A98F96AAC882152114C2FE89AD58DA3BA9E2013CAD88370B80F7D9AD4D9B6494C0591D3CAA382BF6FBD88730_e+1", crate::Radix::Hex, p, RoundingMode::None).unwrap();

        assert!(n2.cmp(&n3) == 0);

        // small value
        let p = 320;
        let n1 = BigFloatNumber::parse("7.C3A95633A7BFB754F49F839BCFDED202E43C4EEB4E6CC1292F4751559BBC55E859642CBB19881B10_e-F", crate::Radix::Hex, p, RoundingMode::None).unwrap();
        let n2 = n1.atanh(p, rm, &mut cc).unwrap();
        let n3 = BigFloatNumber::parse("7.C3A95633A7BFB754F49F839BCFDF6E088C51BE9FAF9B30BC9499ABD8AFDA2F9E0F9B97FBDB228480_e-f", crate::Radix::Hex, p, RoundingMode::None).unwrap();

        // println!("{:?}", n1.format(crate::Radix::Bin, rm).unwrap());
        // println!("{:?}", n2.format(crate::Radix::Hex, rm).unwrap());

        assert!(n2.cmp(&n3) == 0);

        let d1 = BigFloatNumber::max_value(p).unwrap();
        let d2 = BigFloatNumber::min_value(p).unwrap();

        assert!(d1.atanh(p, rm, &mut cc).unwrap_err() == Error::InvalidArgument);
        assert!(d2.atanh(p, rm, &mut cc).unwrap_err() == Error::InvalidArgument);

        // subnormal
        let d3 = BigFloatNumber::min_positive(p).unwrap();
        let zero = BigFloatNumber::new(1).unwrap();

        assert!(d3.atanh(p, rm, &mut cc).unwrap().cmp(&d3) == 0);
        assert!(zero.atanh(p, rm, &mut cc).unwrap().is_zero());

        assert!(ONE.atanh(p, rm, &mut cc).unwrap_err() == Error::ExponentOverflow(Sign::Pos));
        assert!(
            ONE.neg().unwrap().atanh(p, rm, &mut cc).unwrap_err()
                == Error::ExponentOverflow(Sign::Neg)
        );

        let n1 = random_subnormal(p);
        assert!(n1.atanh(p, rm, &mut cc).unwrap().cmp(&n1) == 0);
    }

    #[ignore]
    #[test]
    #[cfg(feature = "std")]
    fn atanh_perf() {
        let p = 160;
        let mut cc = Consts::new().unwrap();
        let mut n = vec![];
        for _ in 0..10000 {
            n.push(BigFloatNumber::random_normal(p, 0, 5).unwrap());
        }

        for _ in 0..5 {
            let start_time = std::time::Instant::now();
            for ni in n.iter() {
                let _f = ni.atanh(p, RoundingMode::ToEven, &mut cc).unwrap();
            }
            let time = start_time.elapsed();
            println!("{}", time.as_millis());
        }
    }
}