1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
//! Exponentiation.

use crate::common::util::round_p;
use crate::ops::consts::Consts;
use crate::{
    common::consts::ONE,
    defs::{Error, WORD_BIT_SIZE, WORD_SIGNIFICANT_BIT},
    num::BigFloatNumber,
    RoundingMode, Sign,
};

impl BigFloatNumber {
    /// Computes `e` to the power of `self` with precision `p`. The result is rounded using the rounding mode `rm`.
    /// This function requires constants cache `cc` for computing the result.
    /// Precision is rounded upwards to the word size.
    ///
    /// ## Errors
    ///
    ///  - ExponentOverflow: the result is too large or too small number.
    ///  - MemoryAllocation: failed to allocate memory.
    ///  - InvalidArgument: the precision is incorrect.
    pub fn exp(&self, p: usize, rm: RoundingMode, cc: &mut Consts) -> Result<Self, Error> {
        let p = round_p(p);

        let mut ret = if self.is_negative() {
            let x = match self.exp_positive_arg(p, cc) {
                Ok(v) => Ok(v),
                Err(e) => match e {
                    Error::ExponentOverflow(_) => Self::new(p),
                    Error::DivisionByZero => Err(Error::DivisionByZero),
                    Error::InvalidArgument => Err(Error::InvalidArgument),
                    Error::MemoryAllocation(a) => Err(Error::MemoryAllocation(a)),
                },
            }?;

            if x.is_zero() {
                Ok(x)
            } else {
                x.reciprocal(x.get_mantissa_max_bit_len(), RoundingMode::None)
            }
        } else {
            self.exp_positive_arg(p, cc)
        }?;

        ret.set_precision(p, rm)?;

        Ok(ret)
    }

    // exp for positive argument
    fn exp_positive_arg(&self, p: usize, cc: &mut Consts) -> Result<Self, Error> {
        if self.is_zero() {
            return Self::from_word(1, p);
        }

        if self.e as isize > WORD_BIT_SIZE as isize {
            return Err(Error::ExponentOverflow(self.get_sign()));
        }

        let p_work = p + 4;

        // compute separately for int and fract parts, then combine the results.
        let int = self.get_int_as_usize()?;
        let e_int = if int > 0 {
            let e_const = cc.e(p_work, RoundingMode::None)?;

            e_const.powi(int, p_work, RoundingMode::None)
        } else {
            ONE.clone()
        }?;

        let mut fract = self.fract()?;
        fract.set_precision(p_work, RoundingMode::None)?;
        fract.set_sign(Sign::Pos);
        let e_fract = fract.expf(RoundingMode::None)?;

        e_int.mul(&e_fract, p_work, RoundingMode::None)
    }

    /// Compute the power of `self` to the integer `i` with precision `p`. The result is rounded using the rounding mode `rm`.
    /// Precision is rounded upwards to the word size.
    ///
    /// ## Errors
    ///
    ///  - ExponentOverflow: the result is too large or too small number.
    ///  - MemoryAllocation: failed to allocate memory.
    ///  - InvalidArgument: the precision is incorrect.
    pub fn powi(&self, mut i: usize, p: usize, rm: RoundingMode) -> Result<Self, Error> {
        if self.is_zero() || i == 1 {
            let mut ret = self.clone()?;
            ret.set_precision(p, rm)?;
            return Ok(ret);
        }

        if i == 0 {
            return Self::from_word(1, p);
        }

        let mut bit_pos = WORD_BIT_SIZE;
        while bit_pos > 0 {
            bit_pos -= 1;
            i <<= 1;
            if i & WORD_SIGNIFICANT_BIT as usize != 0 {
                bit_pos -= 1;
                i <<= 1;
                break;
            }
        }

        let p = round_p(p);

        let mut ret = self.clone()?;

        let p_ret = p + bit_pos * 2;
        ret.set_precision(p_ret, RoundingMode::None)?;

        // TODO: consider windowing and precomputed values.
        while bit_pos > 0 {
            bit_pos -= 1;
            ret = ret.mul(&ret, p_ret, RoundingMode::None)?;
            if i & WORD_SIGNIFICANT_BIT as usize != 0 {
                ret = ret.mul(self, p_ret, RoundingMode::None)?;
            }
            i <<= 1;
        }

        ret.set_precision(p, rm)?;

        Ok(ret)
    }

    // e^self for |self| < 1.
    fn expf(self, rm: RoundingMode) -> Result<Self, Error> {
        let p = self.get_mantissa_max_bit_len();

        let sh = self.sinh_series(p, rm)?; // faster convergence than direct series

        // e = sh + sqrt(sh^2 + 1)
        let sq = sh.mul(&sh, p, rm)?;
        let sq2 = sq.add(&ONE, p, rm)?;
        let sq3 = sq2.sqrt(p, rm)?;
        sq3.add(&sh, p, rm)
    }

    /// Compute the power of `self` to the `n` with precision `p`. The result is rounded using the rounding mode `rm`.
    /// This function requires constants cache `cc` for computing the result.
    /// Precision is rounded upwards to the word size.
    ///
    /// ## Errors
    ///
    ///  - ExponentOverflow: the result is too large or too small number.
    ///  - MemoryAllocation: failed to allocate memory.
    ///  - InvalidArgument: `self` is negative, or the precision is incorrect.
    pub fn pow(
        &self,
        n: &Self,
        p: usize,
        rm: RoundingMode,
        cc: &mut Consts,
    ) -> Result<Self, Error> {
        if self.is_negative() {
            return Err(Error::InvalidArgument);
        } else if self.is_zero() {
            return if n.is_negative() {
                Err(Error::ExponentOverflow(Sign::Pos))
            } else if n.is_zero() {
                Self::from_word(1, p)
            } else {
                Self::new(p)
            };
        } else if self.get_exponent() == 1 && self.cmp(&ONE) == 0 {
            return Self::from_word(1, p);
        } else if n.get_exponent() == 1 && n.abs_cmp(&ONE) == 0 {
            if n.is_positive() {
                let mut ret = self.clone()?;
                ret.set_precision(p, rm)?;
                return Ok(ret);
            } else {
                return self.reciprocal(p, rm);
            }
        }

        let p = round_p(p);

        // self^n = e^(n * ln(self))

        let p_ext = p + 1;
        let mut x = self.clone()?;
        x.set_precision(p_ext, RoundingMode::None)?;

        let ln = x.ln(p_ext, RoundingMode::None, cc)?;

        let m = match n.mul(&ln, p_ext, RoundingMode::None) {
            Ok(v) => Ok(v),
            Err(e) => match e {
                Error::ExponentOverflow(Sign::Neg) => {
                    return Self::new(p);
                }
                Error::ExponentOverflow(Sign::Pos) => Err(Error::ExponentOverflow(Sign::Pos)),
                Error::DivisionByZero => Err(Error::DivisionByZero),
                Error::InvalidArgument => Err(Error::InvalidArgument),
                Error::MemoryAllocation(a) => Err(Error::MemoryAllocation(a)),
            },
        }?;

        let mut ret = m.exp(p_ext, RoundingMode::None, cc)?;

        ret.set_precision(p, rm)?;

        Ok(ret)
    }
}

#[cfg(test)]
mod test {

    use crate::common::{consts::TWO, util::random_subnormal};

    use super::*;

    #[test]
    fn test_power() {
        let mut cc = Consts::new().unwrap();

        // near 1
        let p = 320;
        let d1 = BigFloatNumber::parse(
            "F.FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2DC85F7E77EC4872DC85F7E77EC487_e-1",
            crate::Radix::Hex,
            p,
            RoundingMode::None,
        )
        .unwrap();
        let d2 = d1.exp(p, RoundingMode::ToEven, &mut cc).unwrap();
        let d3 = BigFloatNumber::parse(
            "2.B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A5496AF9D95160A40F47A2ECF1C6AEA0",
            crate::Radix::Hex,
            p,
            RoundingMode::None,
        )
        .unwrap();

        // println!("{:?}", d1.format(crate::Radix::Bin, RoundingMode::None).unwrap());
        // println!("{:?}", d2.format(crate::Radix::Hex, RoundingMode::None).unwrap());

        assert!(d2.cmp(&d3) == 0);

        let d1 = BigFloatNumber::parse(
            "1.00000000000000000000000000000000000000000000000000000000000000002DC85F7E77EC487C",
            crate::Radix::Hex,
            p,
            RoundingMode::None,
        )
        .unwrap();
        let d2 = d1.exp(p, RoundingMode::ToEven, &mut cc).unwrap();
        let d3 = BigFloatNumber::parse(
            "2.B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEFAEC1BE22DDEADB48",
            crate::Radix::Hex,
            p,
            RoundingMode::None,
        )
        .unwrap();

        // println!("{:?}", d1.format(crate::Radix::Bin, RoundingMode::None).unwrap());
        // println!("{:?}", d2.format(crate::Radix::Hex, RoundingMode::None).unwrap());

        assert!(d2.cmp(&d3) == 0);

        // random subnormal
        let d1 = random_subnormal(p);
        assert!(d1.exp(p, RoundingMode::ToEven, &mut cc).unwrap().cmp(&ONE) == 0);

        // pow(small, small)
        let p = 256;
        let mut d1 = BigFloatNumber::parse("1.10010100010011110010001011101010010101111000010101010100010010111001000100011101010111011010110011011111110000010010101000110001001000000101000010101111001100110111100011101000110001001000000101000010101111001100110111100011101010011101101", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        d1.set_exponent(-123456);
        let mut d2 = BigFloatNumber::parse("1.00110001001000010100001010111100110011011110001110101001110110100000101000010010101111000010110010100010011110010001011101010101010001001011100110111111100100010001110101011101101011000001001010100101111001100110111100011101000110001001000", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        d2.set_exponent(-123);
        let d3 = d1.pow(&d2, p, RoundingMode::ToEven, &mut cc).unwrap();
        let d4 = BigFloatNumber::parse("1.111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111100111000110010011110111100111111100111010011001110010010110010100100110010110111110110100011010000110110011010111101110000011100011010100110100000001e-1", crate::Radix::Bin, p, RoundingMode::None).unwrap();

        assert!(d4.cmp(&d3) == 0);

        // pow(large, small)
        let mut d1 = BigFloatNumber::parse("1.10010100010011110010001011101010010101111000010101010100010010111001000100011101010111011010110011011111110000010010101000110001001000000101000010101111001100110111100011101000110001001000000101000010101111001100110111100011101010011101101", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        d1.set_exponent(123456);
        let mut d2 = BigFloatNumber::parse("1.00110001001000010100001010111100110011011110001110101001110110100000101000010010101111000010110010100010011110010001011101010101010001001011100110111111100100010001110101011101101011000001001010100101111001100110111100011101000110001001000", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        d2.set_exponent(-123);
        let d3 = d1.pow(&d2, p, RoundingMode::ToEven, &mut cc).unwrap();
        let d4 = BigFloatNumber::parse("1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110001110011010111001000101100100101011011111001101101011011010100101111001001000010000010100110110011000001011011111000000000010111010000010110111", crate::Radix::Bin, p, RoundingMode::None).unwrap();

        assert!(d4.cmp(&d3) == 0);

        // pow(>~1, large)
        let d1 = BigFloatNumber::parse("1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110001110011010111001000101100100101011011111001101101011011010100101111001001000010000010100110110011000001011011111000000000010111010000010110111", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        let mut d2 = BigFloatNumber::parse("1.00110001001000010100001010111100110011011110001110101001110110100000101000010010101111000010110010100010011110010001011101010101010001001011100110111111100100010001110101011101101011000001001010100101111001100110111100011101000110001001000", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        d2.set_exponent(123);
        let d3 = d1.pow(&d2, p, RoundingMode::ToEven, &mut cc).unwrap();
        let d4 = BigFloatNumber::parse("1.000011101011111010010100111000101101011001100110110100101011001110100110011011100100100101011100010100011101011111010011100011010000110001100111001011000001111110001110000110000000101101011001010001000011011001000010001110000100110000110011111100000001e+1010101101000111", crate::Radix::Bin, p, RoundingMode::None).unwrap();

        assert!(d4.cmp(&d3) == 0);

        // pow(<~1, large)
        let d1 = BigFloatNumber::parse("0.1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111110001110011010111001000101100100101011011111001101101011011010100101111001001000010000010100110110011000001011011111000000000010111010000010110111", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        let mut d2 = BigFloatNumber::parse("1.00110001001000010100001010111100110011011110001110101001110110100000101000010010101111000010110010100010011110010001011101010101010001001011100110111111100100010001110101011101101011000001001010100101111001100110111100011101000110001001000", crate::Radix::Bin, p, RoundingMode::None).unwrap();
        d2.set_exponent(123);
        let d3 = d1.pow(&d2, p, RoundingMode::ToEven, &mut cc).unwrap();
        let d4 = BigFloatNumber::parse("1.010011011001100100100000101011101001110011001100011001011011010010101111101100111101011010101101101111100111001001001101000111110001010010111101110010011100001011011111001111001001001100100111010100100010010111011011110010110101110000100111001100100000011e-110000110100111100", crate::Radix::Bin, p, RoundingMode::None).unwrap();

        // println!("{:?}", d1.format(crate::Radix::Bin, RoundingMode::None).unwrap());
        // println!("{:?}", d2.format(crate::Radix::Bin, RoundingMode::None).unwrap());
        // println!("{:?}", d3.format(crate::Radix::Bin, RoundingMode::None).unwrap());

        assert!(d4.cmp(&d3) == 0);

        // max, min, subnormal
        let d1 = BigFloatNumber::max_value(p).unwrap();
        let d2 = BigFloatNumber::min_value(p).unwrap();
        let d3 = BigFloatNumber::min_positive(p).unwrap();

        assert!(
            d1.exp(p, RoundingMode::ToEven, &mut cc).unwrap_err()
                == Error::ExponentOverflow(Sign::Pos)
        );
        assert!(
            d1.pow(&d1, p, RoundingMode::ToEven, &mut cc).unwrap_err()
                == Error::ExponentOverflow(Sign::Pos)
        );
        assert!(d1
            .pow(&d2, p, RoundingMode::ToEven, &mut cc)
            .unwrap()
            .is_zero());
        assert!(
            d1.pow(&d3, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&ONE)
                == 0
        );

        assert!(d2.exp(p, RoundingMode::ToEven, &mut cc).unwrap().is_zero());

        assert!(d3.exp(p, RoundingMode::ToEven, &mut cc).unwrap().cmp(&ONE) == 0);
        assert!(d3
            .pow(&d1, p, RoundingMode::ToEven, &mut cc)
            .unwrap()
            .is_zero());
        assert!(
            d3.pow(&d2, p, RoundingMode::ToEven, &mut cc).unwrap_err()
                == Error::ExponentOverflow(Sign::Pos)
        );
        assert!(
            d3.pow(&d3, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&ONE)
                == 0
        );

        assert!(
            d1.pow(&ONE, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&d1)
                == 0
        );
        assert!(
            d3.pow(&ONE, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&d3)
                == 0
        );
        assert!(
            ONE.pow(&d1, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&ONE)
                == 0
        );
        assert!(
            ONE.pow(&d2, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&ONE)
                == 0
        );
        assert!(
            ONE.pow(&d3, p, RoundingMode::ToEven, &mut cc)
                .unwrap()
                .cmp(&ONE)
                == 0
        );

        let rm = RoundingMode::ToOdd;
        let d1 = TWO.pow(&ONE.neg().unwrap(), p, rm, &mut cc).unwrap();
        let d2 = TWO.reciprocal(p, rm).unwrap();

        assert!(d1.cmp(&d2) == 0);
    }
}