1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
//! Hyperbolic tangent.

use crate::Consts;
use crate::common::consts::FIFTEEN;
use crate::common::consts::ONE;
use crate::common::consts::THREE;
use crate::defs::EXPONENT_MAX;
use crate::num::BigFloatNumber;
use crate::defs::RoundingMode;
use crate::defs::Error;


impl BigFloatNumber {

    /// Computes the hyperbolic tangent of a number. The result is rounded using the rounding mode `rm`.
    /// This function requires constants cache `cc` for computing the result.
    /// 
    /// ## Errors
    /// 
    ///  - ExponentOverflow: the result is too large or too small number.
    ///  - MemoryAllocation: failed to allocate memory.
    pub fn tanh(&self, rm: RoundingMode, cc: &mut Consts) -> Result<Self, Error> {

        let mut x = self.clone()?;

        if self.get_exponent() as isize >= -(self.get_mantissa_max_bit_len() as isize) / 6 {

            // (e^(2*x) - 1) / (e^(2*x) + 1)

            let mut additional_prec = 2;
            if self.get_exponent() < 0 {
                additional_prec  += self.get_exponent().unsigned_abs() as usize;
            }

            x.set_precision(x.get_mantissa_max_bit_len() + additional_prec, RoundingMode::None)?;

            if x.get_exponent() == EXPONENT_MAX {
                return Err(Error::ExponentOverflow(self.get_sign()));
            }

            x.set_exponent(x.get_exponent() + 1);

            let xexp = x.exp(RoundingMode::None, cc)?;

            let d1 = xexp.sub(&ONE, RoundingMode::None)?;
            let d2 = xexp.add(&ONE, RoundingMode::None)?;

            let mut ret = d1.div(&d2, RoundingMode::None)?;

            ret.set_precision(self.get_mantissa_max_bit_len(), rm)?;
    
            Ok(ret)
    
        } else {

            // short series: x - x^3/3 + 2*x^5/15

            x.set_precision(x.get_mantissa_max_bit_len() + 2, RoundingMode::None)?;

            let xx = x.mul(&x, RoundingMode::None)?;
            let x3 = xx.mul(&x, RoundingMode::None)?;
            let p1 = x3.div(&THREE, RoundingMode::None)?;

            let mut ret = x.sub(&p1, RoundingMode::None)?;

            let mut x5 = x3.mul(&xx, RoundingMode::None)?;
            x5.set_exponent(x5.get_exponent() + 1);
            let p2 = x5.div(&FIFTEEN, RoundingMode::None)?;

            ret = ret.add(&p2, RoundingMode::None)?;

            ret.set_precision(self.get_mantissa_max_bit_len(), rm)?;

            Ok(ret)
        }
    }

}


#[cfg(test)]
mod tests {

    use super::*;

    #[test]
    fn test_tanh() {
        let mut cc = Consts::new().unwrap();
        let rm = RoundingMode::ToEven;
        let mut n1 = BigFloatNumber::from_word(1,320).unwrap();
        n1.set_exponent(0);
        let _n2 = n1.tanh(rm, &mut cc).unwrap();
        //println!("{:?}", n2.format(crate::Radix::Dec, rm).unwrap());

        // asymptotic & extrema testing
        let n1 = BigFloatNumber::parse("8.00000000000000100000000000000010B6200000000000000000000000000002E8B9840AAAAAAAAAAAAAAAAAAAAAAAAADE85C5950B78E38E38E38E38E38E38E3902814A92D7C21CDB6DB6DB6DB6DB6E_e+1", crate::Radix::Hex, 640, RoundingMode::None).unwrap();
        let n2 = n1.tanh(rm, &mut cc).unwrap();
        let n3 = BigFloatNumber::parse("F.FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF3455354A958B21BA74F856FDC3BA2D793AEBE0E1D1ADF118BD9D0B592FF14C815D2C_e-1", crate::Radix::Hex, 640, RoundingMode::None).unwrap();

        assert!(n2.cmp(&n3) == 0);

        // near zero
        let n1 = BigFloatNumber::parse("-4.029AC2B966FC8CD896222A09593F0751477AD7BA9C969E57290BDE947A2E1514DF2901A1C5624013106A5197035DCA72C221BA963E190A20_e-13", crate::Radix::Hex, 448, RoundingMode::None).unwrap();
        let n2 = n1.tanh(rm, &mut cc).unwrap();
        let n3 = BigFloatNumber::parse("-4.029AC2B966FC8CD896222A09593F0751477AC23B7FED67E140D1714FFCEC504D75DF70C388B621AF2FBC77C90C98C50F852D65BEDA273128_e-13", crate::Radix::Hex, 448, RoundingMode::None).unwrap();

        // println!("{:?}", n1.format(crate::Radix::Hex, rm).unwrap());
        // println!("{:?}", n2.format(crate::Radix::Hex, rm).unwrap());

        assert!(n2.cmp(&n3) == 0);

    }

    #[ignore]
    #[test]
    #[cfg(feature="std")]
    fn tanh_perf() {
        let mut cc = Consts::new().unwrap();
        let mut n = vec![];
        for _ in 0..10000 {
            n.push(BigFloatNumber::random_normal(160, 0, 5).unwrap());
        }

        for _ in 0..5 {
            let start_time = std::time::Instant::now();
            for ni in n.iter() {
                let _f = ni.tanh(RoundingMode::ToEven, &mut cc).unwrap();
            }
            let time = start_time.elapsed();
            println!("{}", time.as_millis());
        }
    }

}