1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//! Sqrt computation.

use crate::{
    num::BigFloatNumber, 
    RoundingMode, 
    defs::{Error, EXPONENT_MIN, EXPONENT_MAX}, Exponent,
};
use crate::common::consts::ONE;
use crate::common::consts::THREE;
use crate::common::consts::TEN;
use crate::common::consts::FIFTEEN;


impl BigFloatNumber {

    /// Computes square root of a number. The result is rounded using the rounding mode `rm`.
    /// 
    /// ## Errors
    /// 
    ///  - InvalidArgument: argument is negative.
    ///  - MemoryAllocation: failed to allocate memory.
    pub fn sqrt(&self, rm: RoundingMode) -> Result<Self, Error> {

        if self.is_negative() {
            return Err(Error::InvalidArgument);
        }

        if self.is_zero() {
            return self.clone();
        }

        let mut p = self.get_mantissa_max_bit_len();
        let mut err = 30;
        while p >= 32 {
            p /= 3;
            err += 6;
        }

        let mut x = self.clone()?;
        let e = x.normalize2() as isize;

        let e = self.get_exponent() as isize - e;
        let mut e_shift = 0;
        if e & 1 == 1 {
            err += 1;
            if e < 0 {
                e_shift = 1;
            }
        }

        x.set_precision(x.get_mantissa_max_bit_len() + err, RoundingMode::None)?;
        x.set_exponent((e & 1) as Exponent);

        let mut ret= x.sqrt_iter()?;

        ret = x.mul(&ret, RoundingMode::None)?;
        ret.set_precision(self.get_mantissa_max_bit_len(), rm)?;

        // new exponent
        let mut e_corr = ret.get_exponent() as isize + e / 2 - e_shift as isize;

        if e_corr < EXPONENT_MIN as isize {
            let is_positive = ret.is_positive();
            if !Self::process_subnormal(&mut ret.m, &mut e_corr, rm, is_positive) {
                return Self::new(self.get_mantissa_max_bit_len());
            }
        }

        if e_corr > EXPONENT_MAX as isize {
            return Err(Error::ExponentOverflow(ret.get_sign()));
        }

        ret.set_exponent(e_corr as Exponent);

        Ok(ret)
    }

    // Computation iteration.
    fn sqrt_iter(&self) -> Result<Self, Error> {

        let mut prec = self.get_mantissa_max_bit_len();

        if prec <= 64 {

            prec *= 3;
            let mut x = ONE.div(self, RoundingMode::None)?;

            while prec > 0 {
                x = self.sqrt_step(x)?;
                prec /= 3;
            }

            Ok(x)

        } else {

            let mut x = self.clone()?;

            x.set_precision((prec + 2) / 3, RoundingMode::None)?;

            let xn= x.sqrt_iter()?;

            self.sqrt_step(xn)
        }
    }

    fn sqrt_step(&self, mut xn: Self) -> Result<Self, Error> {
        // y(n) = self*x(n)
        // x(n+1) = x(n)*2^(-3)*(15 - y(n)*(10 - 3*y(n)))
        
        let yn = self.mul(&xn, RoundingMode::None)?;
        let yn = yn.mul(&xn, RoundingMode::None)?;
        let n1 = THREE.mul(&yn, RoundingMode::None)?;
        let n2 = TEN.sub(&n1, RoundingMode::None)?;
        let n3 = yn.mul(&n2, RoundingMode::None)?;
        let n4 = FIFTEEN.sub(&n3, RoundingMode::None)?;

        xn.set_exponent(xn.get_exponent() - 3);
        xn.mul(&n4, RoundingMode::None)
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::Exponent;

    #[cfg(feature="std")]
    use crate::Sign;

    #[test]
    fn test_sqrt() {
/* 
         let n1 = BigFloatNumber::from_raw_parts(
            &[1616073276, 160212377, 2290662135],
            96, Sign::Pos, -70).unwrap();
        let n2 = n1.sqrt(RoundingMode::ToEven).unwrap();
        println!("{:?}", n2.mul(&n2, RoundingMode::ToEven).unwrap());
        return;  */

        // near 1
        let d1 = BigFloatNumber::parse("F.FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2DC85F7E77EC4872DC85F7E77EC487_e-1", crate::Radix::Hex, 320, RoundingMode::None).unwrap();
        let d2 = d1.sqrt(RoundingMode::ToEven).unwrap();
        let d3 = BigFloatNumber::parse("F.FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF96E42FBF3BF624396E42FBF3BF6243_e-1", crate::Radix::Hex, 320, RoundingMode::None).unwrap();

        //println!("{:?}", d2.format(crate::Radix::Hex, RoundingMode::None).unwrap());

        assert!(d2.cmp(&d3) == 0);

        let d1 = BigFloatNumber::parse("1.00000000000000000000000000000000000000000000000000000000000000002DC85F7E77EC487C", crate::Radix::Hex, 320, RoundingMode::None).unwrap();
        let d2 = d1.sqrt(RoundingMode::ToEven).unwrap();
        let d3 = BigFloatNumber::parse("1.000000000000000000000000000000000000000000000000000000000000000016E42FBF3BF6243E", crate::Radix::Hex, 320, RoundingMode::None).unwrap();

        // println!("{:?}", d2.format(crate::Radix::Hex, RoundingMode::None).unwrap());

        assert!(d2.cmp(&d3) == 0);

        // MAX
        let prec = 3200;
        let mut eps = ONE.clone().unwrap();

        let d1 = BigFloatNumber::max_value(prec).unwrap();
        let d2 = d1.sqrt(RoundingMode::ToEven).unwrap();
        let d3 = d2.mul(&d2, RoundingMode::ToEven).unwrap();
        eps.set_exponent(d1.get_exponent() - prec as Exponent + 2);
        assert!(d1.sub(&d3, RoundingMode::ToEven).unwrap().abs().unwrap().cmp(&eps) < 0);

        // MIN
        let d1 = BigFloatNumber::min_positive(prec).unwrap();
        let d2 = d1.sqrt(RoundingMode::ToEven).unwrap();
        let d3 = d2.mul(&d2, RoundingMode::ToEven).unwrap();
        let eps = BigFloatNumber::min_positive(prec).unwrap();
        assert!(d1.sub(&d3, RoundingMode::ToEven).unwrap().abs().unwrap().cmp(&eps) <= 0);

        // random
        let mut eps = ONE.clone().unwrap();
        let prec = 3200;

        for _ in 0..1000 {

            let mut d1 = BigFloatNumber::random_normal(prec, -80, 80).unwrap();
            if d1.is_negative() {
                d1.inv_sign();
            }

            let d2 = d1.sqrt(RoundingMode::ToEven).unwrap();
            let d3 = d2.mul(&d2, RoundingMode::ToEven).unwrap();

            eps.set_exponent(d1.get_exponent() - prec as Exponent + 2);
            //println!("d1 {:?}\nd3 {:?}", d1, d3);
            assert!(d1.sub(&d3, RoundingMode::ToEven).unwrap().abs().unwrap().cmp(&eps) < 0);
        }
    }


    #[ignore]
    #[test]
    #[cfg(feature="std")]
    fn sqrt_perf() {

        let mut n = vec![];
        for _ in 0..100000 {
            let mut n0 = BigFloatNumber::random_normal(132, -0, 0).unwrap();
            n0.set_sign(Sign::Pos);
            n.push(n0);
        }

        for _ in 0..5 {
            let start_time = std::time::Instant::now();
            for ni in n.iter() {
                let _f = ni.sqrt(RoundingMode::ToEven).unwrap();
            }
            let time = start_time.elapsed();
            println!("{}", time.as_millis());
        }
    }
}