1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
use flate2::{read::ZlibDecoder, Decompress, FlushDecompress};
use thiserror::Error;
use std::convert::From;
use std::fmt::{self, Display, Formatter};
use std::io::{self, BufRead, BufReader, ErrorKind, Read, Take};
#[derive(Debug, Error)]
pub enum Error {
MagicMismatch([u8; 5]),
IO(#[from] io::Error),
DecoderInvalid,
}
pub type Result<T> = std::result::Result<T, Error>;
impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Error::MagicMismatch(arr) => write!(f, "Magic is wrong: {:?}", arr),
Error::IO(_) => write!(f, "I/O error"),
Error::DecoderInvalid => write!(f, "Called io::Read again after an error"),
}
}
}
fn check_magic<T: Read>(inner: &mut T) -> Result<()> {
let mut magic: [u8; 5] = [0; 5];
inner.read_exact(&mut magic)?;
if &magic == super::MAGIC {
Ok(())
} else {
Err(Error::MagicMismatch(magic))
}
}
fn read_size<T: Read>(inner: &mut T) -> io::Result<Option<u32>> {
let mut chunk_size_bytes = [0u8; 4];
let len = inner.read(&mut chunk_size_bytes)?;
if len < 4 {
if len == 0 {
return Ok(None);
}
inner.read_exact(&mut chunk_size_bytes[len..])?;
}
let len = u32::from_le_bytes(chunk_size_bytes);
Ok(Some(len))
}
impl From<Error> for io::Error {
fn from(e: Error) -> Self {
io::Error::new(ErrorKind::Other, e)
}
}
enum DecoderKind<T> {
Ok(ZlibDecoder<Take<T>>),
Initial(T),
Invalid,
}
impl<T> DecoderKind<T> {
fn take(&mut self) -> Self {
std::mem::replace(self, DecoderKind::Invalid)
}
fn try_get_mut(&mut self) -> Result<&mut T> {
match self {
Self::Ok(z) => Ok(z.get_mut().get_mut()),
Self::Invalid => Err(Error::DecoderInvalid),
Self::Initial(t) => Ok(t),
}
}
fn try_into_inner(self) -> Result<T> {
match self {
Self::Ok(z) => Ok(z.into_inner().into_inner()),
Self::Invalid => Err(Error::DecoderInvalid),
Self::Initial(t) => Ok(t),
}
}
}
pub struct SegmentedDecoder<T> {
inner: DecoderKind<T>,
}
impl<T> SegmentedDecoder<T> {
pub fn into_inner(self) -> T {
self.inner.try_into_inner().expect("decoder invalid")
}
pub fn get_mut(&mut self) -> &mut T {
self.inner.try_get_mut().expect("decoder invalid")
}
}
impl<T: Read> SegmentedDecoder<T> {
pub fn new(mut inner: T) -> Result<Self> {
check_magic(&mut inner)?;
Ok(Self {
inner: DecoderKind::Initial(inner),
})
}
}
impl<T: Read> Read for SegmentedDecoder<T> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
if let DecoderKind::Ok(z) = &mut self.inner {
let len = z.read(buf)?;
if len == 0 {
let inner = self.inner.take().try_into_inner()?;
self.inner = DecoderKind::Initial(inner);
}
Ok(len)
} else if let DecoderKind::Initial(mut inner) = self.inner.take() {
if let Some(limit) = read_size(&mut inner)? {
let take = inner.take(limit.into());
self.inner = DecoderKind::Ok(ZlibDecoder::new(take));
self.read(buf)
} else {
Ok(0)
}
} else {
Err(Error::DecoderInvalid.into())
}
}
}
struct SegmentedDecoderRaw<T> {
obj: BufReader<Take<T>>,
data: Decompress,
}
impl<T: Read> SegmentedDecoderRaw<T> {
fn read_zlib(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut d_out = 0;
let mut c_out = self.data.total_out();
let mut c_in = self.data.total_in();
loop {
let input = self.obj.fill_buf()?;
let mut d_in = 0;
let flush = if input.is_empty() {
FlushDecompress::Finish
} else {
FlushDecompress::None
};
let status = self
.data
.decompress(input, &mut buf[d_out as usize..], flush)?;
update(&mut c_out, &mut d_out, self.data.total_out());
update(&mut c_in, &mut d_in, self.data.total_in());
self.obj.consume(d_in as usize);
match status {
flate2::Status::Ok => {
if d_out as usize == buf.len() {
break;
}
}
flate2::Status::BufError => break,
flate2::Status::StreamEnd => break,
}
}
Ok(d_out as usize)
}
#[allow(dead_code)]
pub fn with_capacity(capacity: usize, inner: T) -> Result<Self> {
Self::with_buf_reader(inner, |inner| BufReader::with_capacity(capacity, inner))
}
#[allow(dead_code)]
pub fn new(inner: T) -> Result<Self> {
Self::with_buf_reader(inner, BufReader::new)
}
fn with_buf_reader<F>(mut inner: T, make_buf_reader: F) -> Result<Self>
where
F: FnOnce(Take<T>) -> BufReader<Take<T>>,
{
check_magic(&mut inner)?;
if let Some(size) = read_size(&mut inner)? {
Ok(Self {
obj: make_buf_reader(inner.take(size.into())),
data: Decompress::new(true),
})
} else {
todo!()
}
}
}
#[inline]
fn update(cnt: &mut u64, diff: &mut u64, new: u64) {
*diff += new - *cnt;
*cnt = new;
}
impl<T> Read for SegmentedDecoderRaw<T>
where
T: Read,
{
#[allow(clippy::many_single_char_names)]
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let size = self.read_zlib(buf)?;
if size < buf.len() {
if let Some(limit) = read_size(self.obj.get_mut().get_mut())? {
self.obj.get_mut().set_limit(limit.into());
self.data.reset(true);
return self.read(&mut buf[size..]);
}
}
Ok(size)
}
}