1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
use std::cmp::min;
use arrow::{
datatypes::SchemaRef,
error::ArrowError,
record_batch::{RecordBatch, RecordBatchReader},
};
use odbc_api::{buffers::ColumnarAnyBuffer, BlockCursor, Cursor};
use crate::{BufferAllocationOptions, ConcurrentOdbcReader, Error};
use super::{odbc_batch_stream::OdbcBatchStream, to_record_batch::ToRecordBatch};
/// Arrow ODBC reader. Implements the [`arrow::record_batch::RecordBatchReader`] trait so it can be
/// used to fill Arrow arrays from an ODBC data source.
///
/// This reader is generic over the cursor type so it can be used in cases there the cursor only
/// borrows a statement handle (most likely the case then using prepared queries), or owned
/// statement handles (recommened then using one shot queries, to have an easier life with the
/// borrow checker).
///
/// # Example
///
/// ```no_run
/// use arrow_odbc::{odbc_api::{Environment, ConnectionOptions}, OdbcReaderBuilder};
///
/// const CONNECTION_STRING: &str = "\
/// Driver={ODBC Driver 17 for SQL Server};\
/// Server=localhost;\
/// UID=SA;\
/// PWD=My@Test@Password1;\
/// ";
///
/// fn main() -> Result<(), anyhow::Error> {
///
/// let odbc_environment = Environment::new()?;
///
/// // Connect with database.
/// let connection = odbc_environment.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
///
/// // This SQL statement does not require any arguments.
/// let parameters = ();
///
/// // Execute query and create result set
/// let cursor = connection
/// .execute("SELECT * FROM MyTable", parameters)?
/// .expect("SELECT statement must produce a cursor");
///
/// // Read result set as arrow batches. Infer Arrow types automatically using the meta
/// // information of `cursor`.
/// let arrow_record_batches = OdbcReaderBuilder::new()
/// // Each batch shall only consist of maximum 10.000 rows.
/// .with_max_num_rows_per_batch(10_000)
/// .build(cursor)?;
///
/// for batch in arrow_record_batches {
/// // ... process batch ...
/// }
/// Ok(())
/// }
/// ```
pub struct OdbcReader<C: Cursor> {
/// Converts the content of ODBC buffers into Arrow record batches
converter: ToRecordBatch,
/// Fetches values from the ODBC datasource using columnar batches. Values are streamed batch
/// by batch in order to avoid reallocation of the buffers used for tranistion.
batch_stream: BlockCursor<C, ColumnarAnyBuffer>,
/// We remember if the user decided to use fallibale allocations or not in case we need to
/// allocate another buffer due to a state transition towards [`ConcurrentOdbcReader`].
fallibale_allocations: bool,
}
impl<C: Cursor> OdbcReader<C> {
#[deprecated(since = "2.3.0", note = "use OdbcReaderBuilder instead")]
/// Construct a new `OdbcReader` instance. This constructor infers the Arrow schema from the
/// metadata of the cursor. If you want to set it explicitly use [`Self::with_arrow_schema`].
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
/// * `max_batch_size`: Maximum batch size requested from the datasource.
pub fn new(cursor: C, max_batch_size: usize) -> Result<Self, Error> {
OdbcReaderBuilder::new()
.with_max_bytes_per_batch(usize::MAX)
.with_max_num_rows_per_batch(max_batch_size)
.build(cursor)
}
#[deprecated(since = "2.3.0", note = "use OdbcReaderBuilder instead")]
/// Construct a new `OdbcReader instance.
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
/// * `max_batch_size`: Maximum batch size requested from the datasource.
/// * `schema`: Arrow schema. Describes the type of the Arrow Arrays in the record batches, but
/// is also used to determine CData type requested from the data source.
pub fn with_arrow_schema(
cursor: C,
max_batch_size: usize,
schema: SchemaRef,
) -> Result<Self, Error> {
OdbcReaderBuilder::new()
.with_max_bytes_per_batch(usize::MAX)
.with_max_num_rows_per_batch(max_batch_size)
.with_schema(schema)
.build(cursor)
}
#[deprecated(since = "2.3.0", note = "use OdbcReaderBuilder instead")]
/// Construct a new [`crate::OdbcReader`] instance. This method allows you full control over
/// what options to explicitly specify, and what options you want to leave to this crate to
/// automatically decide.
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
/// * `max_batch_size`: Maximum batch size requested from the datasource.
/// * `schema`: Arrow schema. Describes the type of the Arrow Arrays in the record batches, but
/// is also used to determine CData type requested from the data source. Set to `None` to
/// infer schema from the data source.
/// * `buffer_allocation_options`: Allows you to specify upper limits for binary and / or text
/// buffer types. This is useful support fetching data from e.g. VARCHAR(max) or
/// VARBINARY(max) columns, which otherwise might lead to errors, due to the ODBC driver
/// having a hard time specifying a good upper bound for the largest possible expected value.
///
/// # Example
///
/// You can use this constructor to specify an upper bound for variadic sized columns.
///
/// ```no_run
/// use arrow_odbc::{
/// odbc_api::{Environment, ConnectionOptions},
/// OdbcReader,
/// BufferAllocationOptions
/// };
///
/// const CONNECTION_STRING: &str = "\
/// Driver={ODBC Driver 17 for SQL Server};\
/// Server=localhost;\
/// UID=SA;\
/// PWD=My@Test@Password1;\
/// ";
///
/// fn main() -> Result<(), anyhow::Error> {
///
/// let odbc_environment = Environment::new()?;
///
/// // Connect with database.
/// let connection = odbc_environment.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
///
/// // This SQL statement does not require any arguments.
/// let parameters = ();
///
/// // Execute query and create result set
/// let cursor = connection
/// .execute("SELECT * FROM MyTable", parameters)?
/// .expect("SELECT statement must produce a cursor");
///
/// // Each batch shall only consist of maximum 10.000 rows.
/// let max_batch_size = 10_000;
///
/// // Read result set as arrow batches. Infer Arrow types automatically using the meta
/// // information of `cursor`.
/// let arrow_record_batches = OdbcReader::with(
/// cursor,
/// max_batch_size,
/// None,
/// BufferAllocationOptions {
/// // Limit max text size of variadic fields in case the database schema
/// // information states something ridicoulisly large.
/// max_text_size: Some(4096),
/// ..BufferAllocationOptions::default()
/// }
/// )?;
///
/// for batch in arrow_record_batches {
/// // ... process batch ...
/// }
/// Ok(())
/// }
/// ```
pub fn with(
cursor: C,
max_batch_size: usize,
schema: Option<SchemaRef>,
buffer_allocation_options: BufferAllocationOptions,
) -> Result<Self, Error> {
let mut builder = OdbcReaderBuilder::new();
builder
.with_max_bytes_per_batch(usize::MAX)
.with_max_num_rows_per_batch(max_batch_size)
.with_fallibale_allocations(buffer_allocation_options.fallibale_allocations);
if let Some(schema) = schema {
builder.with_schema(schema);
}
if let Some(max_text_size) = buffer_allocation_options.max_text_size {
builder.with_max_text_size(max_text_size);
}
if let Some(max_binary_size) = buffer_allocation_options.max_binary_size {
builder.with_max_binary_size(max_binary_size);
}
builder.build(cursor)
}
/// Consume this instance to create a similar ODBC reader which fetches batches asynchronously.
///
/// Steals all resources from this [`OdbcReader`] instance, and allocates another buffer for
/// transiting data from the ODBC data source to the application. This way one buffer can be
/// written to by a dedicated system thread, while the other is read by the application. Use
/// this if you want to trade memory for speed.
///
/// # Example
///
/// ```no_run
/// use arrow_odbc::{odbc_api::{Environment, ConnectionOptions}, OdbcReaderBuilder};
/// use std::sync::OnceLock;
///
/// // In order to fetch in a dedicated system thread we need a cursor with static lifetime,
/// // this implies a static ODBC environment.
/// static ENV: OnceLock<Environment> = OnceLock::new();
///
/// const CONNECTION_STRING: &str = "\
/// Driver={ODBC Driver 17 for SQL Server};\
/// Server=localhost;\
/// UID=SA;\
/// PWD=My@Test@Password1;\
/// ";
///
/// fn main() -> Result<(), anyhow::Error> {
///
/// let odbc_environment = ENV.get_or_init(|| {Environment::new().unwrap() });
///
/// // Connect with database.
/// let connection = odbc_environment.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
///
/// // This SQL statement does not require any arguments.
/// let parameters = ();
///
/// // Execute query and create result set
/// let cursor = connection
/// // Using `into_cursor` instead of `execute` takes ownership of the connection and
/// // allows for a cursor with static lifetime.
/// .into_cursor("SELECT * FROM MyTable", parameters)?
/// .expect("SELECT statement must produce a cursor");
///
/// // Construct ODBC reader ...
/// let arrow_record_batches = OdbcReaderBuilder::new()
/// .build(cursor)?
/// // ... and make it concurrent
/// .into_concurrent()?;
///
/// for batch in arrow_record_batches {
/// // ... process batch ...
/// }
/// Ok(())
/// }
/// ```
pub fn into_concurrent(self) -> Result<ConcurrentOdbcReader<C>, Error>
where
C: Send + 'static,
{
ConcurrentOdbcReader::from_block_cursor(
self.batch_stream,
self.converter,
self.fallibale_allocations,
)
}
/// Destroy the ODBC arrow reader and yield the underlyinng cursor object.
///
/// One application of this is to process more than one result set in case you executed a stored
/// procedure.
pub fn into_cursor(self) -> Result<C, odbc_api::Error> {
let (cursor, _buffer) = self.batch_stream.unbind()?;
Ok(cursor)
}
/// Size of the internal preallocated buffer bound to the cursor and filled by your ODBC driver
/// in rows. Each record batch will at most have this many rows. Only the last one may have
/// less.
pub fn max_rows_per_batch(&self) -> usize {
self.batch_stream.row_array_size()
}
}
impl<C> Iterator for OdbcReader<C>
where
C: Cursor,
{
type Item = Result<RecordBatch, ArrowError>;
fn next(&mut self) -> Option<Self::Item> {
next(&mut self.batch_stream, &mut self.converter)
}
}
impl<C> RecordBatchReader for OdbcReader<C>
where
C: Cursor,
{
fn schema(&self) -> SchemaRef {
self.converter.schema().clone()
}
}
pub fn next(
batch_stream: &mut impl OdbcBatchStream,
converter: &mut ToRecordBatch,
) -> Option<Result<RecordBatch, ArrowError>> {
match batch_stream.next() {
// We successfully fetched a batch from the database. Try to copy it into a record batch
// and forward errors if any.
Ok(Some(batch)) => {
let result_record_batch = converter
.buffer_to_record_batch(batch)
.map_err(|mapping_error| ArrowError::ExternalError(Box::new(mapping_error)));
Some(result_record_batch)
}
// We ran out of batches in the result set. End the iterator.
Ok(None) => None,
// We had an error fetching the next batch from the database, let's report it as an
// external error.
Err(odbc_error) => Some(Err(ArrowError::ExternalError(Box::new(odbc_error)))),
}
}
/// Creates instances of [`OdbcReader`] based on [`odbc_api::Cursor`].
///
/// Using a builder pattern instead of passing structs with all required arguments to the
/// constructors of [`OdbcReader`] allows `arrow_odbc` to introduce new paramters to fine tune the
/// creation and behavior of the readers without breaking the code of downstream applications.
#[derive(Default, Clone)]
pub struct OdbcReaderBuilder {
/// `Some` implies the user has set this explicitly using
/// [`OdbcReaderBuilder::with_max_num_rows_per_batch`]. `None` implies that we have to choose
/// for the user.
max_num_rows_per_batch: usize,
max_bytes_per_batch: usize,
schema: Option<SchemaRef>,
max_text_size: Option<usize>,
max_binary_size: Option<usize>,
fallibale_allocations: bool,
}
impl OdbcReaderBuilder {
pub fn new() -> Self {
// In the abscence of an explicit row limit set by the user we choose u16 MAX (65535). This
// is a reasonable high value to allow for siginificantly reducing IO overhead as opposed to
// row by row fetching already. Likely for many database schemas a memory limitation will
// kick in before this limit. If not however it can still be dangerous to go beyond this
// number. Some drivers use a 16Bit integer to count rows and you can run into overflow
// errors if you use one of them. Once such issue occurred with SAP anywhere.
const DEFAULT_MAX_ROWS_PER_BATCH: usize = u16::MAX as usize;
const DEFAULT_MAX_BYTES_PER_BATCH: usize = 512 * 1024 * 1024;
OdbcReaderBuilder {
max_num_rows_per_batch: DEFAULT_MAX_ROWS_PER_BATCH,
max_bytes_per_batch: DEFAULT_MAX_BYTES_PER_BATCH,
schema: None,
max_text_size: None,
max_binary_size: None,
fallibale_allocations: false,
}
}
/// Limits the maximum amount of rows which are fetched in a single roundtrip to the datasource.
/// Higher numbers lower the IO overhead and may speed up your runtime, but also require larger
/// preallocated buffers and use more memory. This value defaults to `65535` which is `u16` max.
/// Some ODBC drivers use a 16Bit integer to count rows so this can avoid overflows. The
/// improvements in saving IO overhead going above that number are estimated to be small. Your
/// milage may vary of course.
pub fn with_max_num_rows_per_batch(&mut self, max_num_rows_per_batch: usize) -> &mut Self {
self.max_num_rows_per_batch = max_num_rows_per_batch;
self
}
/// In addition to a row size limit you may specify an upper bound in bytes for allocating the
/// transit buffer. This is useful if you do not know the database schema, or your code has to
/// work with different ones, but you know the amount of memory in your machine. This limit is
/// applied in addition to [`OdbcReaderBuilder::with_max_num_rows_per_batch`]. Whichever of
/// these leads to a smaller buffer is used. This defaults to 512 MiB.
pub fn with_max_bytes_per_batch(&mut self, max_bytes_per_batch: usize) -> &mut Self {
self.max_bytes_per_batch = max_bytes_per_batch;
self
}
/// Describes the types of the Arrow Arrays in the record batches. It is also used to determine
/// CData type requested from the data source. If this is not explicitly set the type is infered
/// from the schema information provided by the ODBC driver. A reason for setting this
/// explicitly could be that you have superior knowledge about your data compared to the ODBC
/// driver. E.g. a type for an unsigned byte (`u8`) is not part of the ODBC standard. Therfore
/// the driver might at best be able to tell you that this is an (`i8`). If you want to still
/// have `u8`s in the resulting array you need to specify the schema manually. Also many drivers
/// struggle with reporting nullability correctly and just report every column as nullable.
/// Explicitly specifying a schema can also compensate for such shortcomings if it turns out to
/// be relevant.
pub fn with_schema(&mut self, schema: SchemaRef) -> &mut Self {
self.schema = Some(schema);
self
}
/// An upper limit for the size of buffers bound to variadic text columns of the data source.
/// This limit does not (directly) apply to the size of the created arrow buffers, but rather
/// applies to the buffers used for the data in transit. Use this option if you have e.g.
/// `VARCHAR(MAX)` fields in your database schema. In such a case without an upper limit, the
/// ODBC driver of your data source is asked for the maximum size of an element, and is likely
/// to answer with either `0` or a value which is way larger than any actual entry in the column
/// If you can not adapt your database schema, this limit might be what you are looking for. On
/// windows systems the size is double words (16Bit), as windows utilizes an UTF-16 encoding. So
/// this translates to roughly the size in letters. On non windows systems this is the size in
/// bytes and the datasource is assumed to utilize an UTF-8 encoding. If this method is not
/// called no upper limit is set and the maximum element size, reported by ODBC is used to
/// determine buffer sizes.
pub fn with_max_text_size(&mut self, max_text_size: usize) -> &mut Self {
self.max_text_size = Some(max_text_size);
self
}
/// An upper limit for the size of buffers bound to variadic binary columns of the data source.
/// This limit does not (directly) apply to the size of the created arrow buffers, but rather
/// applies to the buffers used for the data in transit. Use this option if you have e.g.
/// `VARBINARY(MAX)` fields in your database schema. In such a case without an upper limit, the
/// ODBC driver of your data source is asked for the maximum size of an element, and is likely
/// to answer with either `0` or a value which is way larger than any actual entry in the
/// column. If you can not adapt your database schema, this limit might be what you are looking
/// for. This is the maximum size in bytes of the binary column. If this method is not called no
/// upper limit is set and the maximum element size, reported by ODBC is used to determine
/// buffer sizes.
pub fn with_max_binary_size(&mut self, max_binary_size: usize) -> &mut Self {
self.max_binary_size = Some(max_binary_size);
self
}
/// Set to `true` in order to trigger an [`crate::ColumnFailure::TooLarge`] instead of a panic
/// in case the buffers can not be allocated due to their size. This might have a performance
/// cost for constructing the reader. `false` by default.
pub fn with_fallibale_allocations(&mut self, fallibale_allocations: bool) -> &mut Self {
self.fallibale_allocations = fallibale_allocations;
self
}
/// No matter if the user explicitly specified a limit in row size, a memory limit, both or
/// neither. In order to construct a reader we need to decide on the buffer size in rows.
fn buffer_size_in_rows(&self, bytes_per_row: usize) -> Result<usize, Error> {
let rows_per_batch = self.max_bytes_per_batch / bytes_per_row;
if rows_per_batch == 0 {
Err(Error::OdbcBufferTooSmall {
max_bytes_per_batch: self.max_bytes_per_batch,
bytes_per_row,
})
} else {
Ok(min(self.max_num_rows_per_batch, rows_per_batch))
}
}
/// Constructs an [`OdbcReader`] which consumes the giver cursor. The cursor will also be used
/// to infer the Arrow schema if it has not been supplied explicitly.
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
pub fn build<C>(&self, mut cursor: C) -> Result<OdbcReader<C>, Error>
where
C: Cursor,
{
let buffer_allocation_options = BufferAllocationOptions {
max_text_size: self.max_text_size,
max_binary_size: self.max_binary_size,
fallibale_allocations: self.fallibale_allocations,
};
let converter =
ToRecordBatch::new(&mut cursor, self.schema.clone(), buffer_allocation_options)?;
let bytes_per_row = converter.row_size_in_bytes();
let buffer_size_in_rows = self.buffer_size_in_rows(bytes_per_row)?;
let row_set_buffer =
converter.allocate_buffer(buffer_size_in_rows, self.fallibale_allocations)?;
let batch_stream = cursor.bind_buffer(row_set_buffer).unwrap();
Ok(OdbcReader {
converter,
batch_stream,
fallibale_allocations: self.fallibale_allocations,
})
}
}