arrow_buffer/util/
bit_chunk_iterator.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! Types for iterating over bitmasks in 64-bit chunks
19
20use crate::util::bit_util::ceil;
21use std::fmt::Debug;
22
23/// Iterates over an arbitrarily aligned byte buffer
24///
25/// Yields an iterator of aligned u64, along with the leading and trailing
26/// u64 necessary to align the buffer to a 8-byte boundary
27///
28/// This is unlike [`BitChunkIterator`] which only exposes a trailing u64,
29/// and consequently has to perform more work for each read
30#[derive(Debug)]
31pub struct UnalignedBitChunk<'a> {
32    lead_padding: usize,
33    trailing_padding: usize,
34
35    prefix: Option<u64>,
36    chunks: &'a [u64],
37    suffix: Option<u64>,
38}
39
40impl<'a> UnalignedBitChunk<'a> {
41    /// Create a from a byte array, and and an offset and length in bits
42    pub fn new(buffer: &'a [u8], offset: usize, len: usize) -> Self {
43        if len == 0 {
44            return Self {
45                lead_padding: 0,
46                trailing_padding: 0,
47                prefix: None,
48                chunks: &[],
49                suffix: None,
50            };
51        }
52
53        let byte_offset = offset / 8;
54        let offset_padding = offset % 8;
55
56        let bytes_len = (len + offset_padding).div_ceil(8);
57        let buffer = &buffer[byte_offset..byte_offset + bytes_len];
58
59        let prefix_mask = compute_prefix_mask(offset_padding);
60
61        // If less than 8 bytes, read into prefix
62        if buffer.len() <= 8 {
63            let (suffix_mask, trailing_padding) = compute_suffix_mask(len, offset_padding);
64            let prefix = read_u64(buffer) & suffix_mask & prefix_mask;
65
66            return Self {
67                lead_padding: offset_padding,
68                trailing_padding,
69                prefix: Some(prefix),
70                chunks: &[],
71                suffix: None,
72            };
73        }
74
75        // If less than 16 bytes, read into prefix and suffix
76        if buffer.len() <= 16 {
77            let (suffix_mask, trailing_padding) = compute_suffix_mask(len, offset_padding);
78            let prefix = read_u64(&buffer[..8]) & prefix_mask;
79            let suffix = read_u64(&buffer[8..]) & suffix_mask;
80
81            return Self {
82                lead_padding: offset_padding,
83                trailing_padding,
84                prefix: Some(prefix),
85                chunks: &[],
86                suffix: Some(suffix),
87            };
88        }
89
90        // Read into prefix and suffix as needed
91        let (prefix, mut chunks, suffix) = unsafe { buffer.align_to::<u64>() };
92        assert!(
93            prefix.len() < 8 && suffix.len() < 8,
94            "align_to did not return largest possible aligned slice"
95        );
96
97        let (alignment_padding, prefix) = match (offset_padding, prefix.is_empty()) {
98            (0, true) => (0, None),
99            (_, true) => {
100                let prefix = chunks[0] & prefix_mask;
101                chunks = &chunks[1..];
102                (0, Some(prefix))
103            }
104            (_, false) => {
105                let alignment_padding = (8 - prefix.len()) * 8;
106
107                let prefix = (read_u64(prefix) & prefix_mask) << alignment_padding;
108                (alignment_padding, Some(prefix))
109            }
110        };
111
112        let lead_padding = offset_padding + alignment_padding;
113        let (suffix_mask, trailing_padding) = compute_suffix_mask(len, lead_padding);
114
115        let suffix = match (trailing_padding, suffix.is_empty()) {
116            (0, _) => None,
117            (_, true) => {
118                let suffix = chunks[chunks.len() - 1] & suffix_mask;
119                chunks = &chunks[..chunks.len() - 1];
120                Some(suffix)
121            }
122            (_, false) => Some(read_u64(suffix) & suffix_mask),
123        };
124
125        Self {
126            lead_padding,
127            trailing_padding,
128            prefix,
129            chunks,
130            suffix,
131        }
132    }
133
134    /// Returns the number of leading padding bits
135    pub fn lead_padding(&self) -> usize {
136        self.lead_padding
137    }
138
139    /// Returns the number of trailing padding bits
140    pub fn trailing_padding(&self) -> usize {
141        self.trailing_padding
142    }
143
144    /// Returns the prefix, if any
145    pub fn prefix(&self) -> Option<u64> {
146        self.prefix
147    }
148
149    /// Returns the suffix, if any
150    pub fn suffix(&self) -> Option<u64> {
151        self.suffix
152    }
153
154    /// Returns reference to the chunks
155    pub fn chunks(&self) -> &'a [u64] {
156        self.chunks
157    }
158
159    /// Returns an iterator over the chunks
160    pub fn iter(&self) -> UnalignedBitChunkIterator<'a> {
161        self.prefix
162            .into_iter()
163            .chain(self.chunks.iter().cloned())
164            .chain(self.suffix)
165    }
166
167    /// Counts the number of ones
168    pub fn count_ones(&self) -> usize {
169        self.iter().map(|x| x.count_ones() as usize).sum()
170    }
171}
172
173/// Iterator over an [`UnalignedBitChunk`]
174pub type UnalignedBitChunkIterator<'a> = std::iter::Chain<
175    std::iter::Chain<std::option::IntoIter<u64>, std::iter::Cloned<std::slice::Iter<'a, u64>>>,
176    std::option::IntoIter<u64>,
177>;
178
179#[inline]
180fn read_u64(input: &[u8]) -> u64 {
181    let len = input.len().min(8);
182    let mut buf = [0_u8; 8];
183    buf[..len].copy_from_slice(input);
184    u64::from_le_bytes(buf)
185}
186
187#[inline]
188fn compute_prefix_mask(lead_padding: usize) -> u64 {
189    !((1 << lead_padding) - 1)
190}
191
192#[inline]
193fn compute_suffix_mask(len: usize, lead_padding: usize) -> (u64, usize) {
194    let trailing_bits = (len + lead_padding) % 64;
195
196    if trailing_bits == 0 {
197        return (u64::MAX, 0);
198    }
199
200    let trailing_padding = 64 - trailing_bits;
201    let suffix_mask = (1 << trailing_bits) - 1;
202    (suffix_mask, trailing_padding)
203}
204
205/// Iterates over an arbitrarily aligned byte buffer
206///
207/// Yields an iterator of u64, and a remainder. The first byte in the buffer
208/// will be the least significant byte in output u64
209///
210#[derive(Debug)]
211pub struct BitChunks<'a> {
212    buffer: &'a [u8],
213    /// offset inside a byte, guaranteed to be between 0 and 7 (inclusive)
214    bit_offset: usize,
215    /// number of complete u64 chunks
216    chunk_len: usize,
217    /// number of remaining bits, guaranteed to be between 0 and 63 (inclusive)
218    remainder_len: usize,
219}
220
221impl<'a> BitChunks<'a> {
222    /// Create a new [`BitChunks`] from a byte array, and an offset and length in bits
223    pub fn new(buffer: &'a [u8], offset: usize, len: usize) -> Self {
224        assert!(
225            ceil(offset + len, 8) <= buffer.len(),
226            "offset + len out of bounds"
227        );
228
229        let byte_offset = offset / 8;
230        let bit_offset = offset % 8;
231
232        // number of complete u64 chunks
233        let chunk_len = len / 64;
234        // number of remaining bits
235        let remainder_len = len % 64;
236
237        BitChunks::<'a> {
238            buffer: &buffer[byte_offset..],
239            bit_offset,
240            chunk_len,
241            remainder_len,
242        }
243    }
244}
245
246/// Iterator over chunks of 64 bits represented as an u64
247#[derive(Debug)]
248pub struct BitChunkIterator<'a> {
249    buffer: &'a [u8],
250    bit_offset: usize,
251    chunk_len: usize,
252    index: usize,
253}
254
255impl<'a> BitChunks<'a> {
256    /// Returns the number of remaining bits, guaranteed to be between 0 and 63 (inclusive)
257    #[inline]
258    pub const fn remainder_len(&self) -> usize {
259        self.remainder_len
260    }
261
262    /// Returns the number of chunks
263    #[inline]
264    pub const fn chunk_len(&self) -> usize {
265        self.chunk_len
266    }
267
268    /// Returns the bitmask of remaining bits
269    #[inline]
270    pub fn remainder_bits(&self) -> u64 {
271        let bit_len = self.remainder_len;
272        if bit_len == 0 {
273            0
274        } else {
275            let bit_offset = self.bit_offset;
276            // number of bytes to read
277            // might be one more than sizeof(u64) if the offset is in the middle of a byte
278            let byte_len = ceil(bit_len + bit_offset, 8);
279            // pointer to remainder bytes after all complete chunks
280            let base = unsafe {
281                self.buffer
282                    .as_ptr()
283                    .add(self.chunk_len * std::mem::size_of::<u64>())
284            };
285
286            let mut bits = unsafe { std::ptr::read(base) } as u64 >> bit_offset;
287            for i in 1..byte_len {
288                let byte = unsafe { std::ptr::read(base.add(i)) };
289                bits |= (byte as u64) << (i * 8 - bit_offset);
290            }
291
292            bits & ((1 << bit_len) - 1)
293        }
294    }
295
296    /// Returns an iterator over chunks of 64 bits represented as an u64
297    #[inline]
298    pub const fn iter(&self) -> BitChunkIterator<'a> {
299        BitChunkIterator::<'a> {
300            buffer: self.buffer,
301            bit_offset: self.bit_offset,
302            chunk_len: self.chunk_len,
303            index: 0,
304        }
305    }
306
307    /// Returns an iterator over chunks of 64 bits, with the remaining bits zero padded to 64-bits
308    #[inline]
309    pub fn iter_padded(&self) -> impl Iterator<Item = u64> + 'a {
310        self.iter().chain(std::iter::once(self.remainder_bits()))
311    }
312}
313
314impl<'a> IntoIterator for BitChunks<'a> {
315    type Item = u64;
316    type IntoIter = BitChunkIterator<'a>;
317
318    fn into_iter(self) -> Self::IntoIter {
319        self.iter()
320    }
321}
322
323impl Iterator for BitChunkIterator<'_> {
324    type Item = u64;
325
326    #[inline]
327    fn next(&mut self) -> Option<u64> {
328        let index = self.index;
329        if index >= self.chunk_len {
330            return None;
331        }
332
333        // cast to *const u64 should be fine since we are using read_unaligned below
334        #[allow(clippy::cast_ptr_alignment)]
335        let raw_data = self.buffer.as_ptr() as *const u64;
336
337        // bit-packed buffers are stored starting with the least-significant byte first
338        // so when reading as u64 on a big-endian machine, the bytes need to be swapped
339        let current = unsafe { std::ptr::read_unaligned(raw_data.add(index)).to_le() };
340
341        let bit_offset = self.bit_offset;
342
343        let combined = if bit_offset == 0 {
344            current
345        } else {
346            // the constructor ensures that bit_offset is in 0..8
347            // that means we need to read at most one additional byte to fill in the high bits
348            let next =
349                unsafe { std::ptr::read_unaligned(raw_data.add(index + 1) as *const u8) as u64 };
350
351            (current >> bit_offset) | (next << (64 - bit_offset))
352        };
353
354        self.index = index + 1;
355
356        Some(combined)
357    }
358
359    #[inline]
360    fn size_hint(&self) -> (usize, Option<usize>) {
361        (
362            self.chunk_len - self.index,
363            Some(self.chunk_len - self.index),
364        )
365    }
366}
367
368impl ExactSizeIterator for BitChunkIterator<'_> {
369    #[inline]
370    fn len(&self) -> usize {
371        self.chunk_len - self.index
372    }
373}
374
375#[cfg(test)]
376mod tests {
377    use rand::distr::uniform::UniformSampler;
378    use rand::distr::uniform::UniformUsize;
379    use rand::prelude::*;
380    use rand::rng;
381
382    use crate::buffer::Buffer;
383    use crate::util::bit_chunk_iterator::UnalignedBitChunk;
384
385    #[test]
386    fn test_iter_aligned() {
387        let input: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7];
388        let buffer: Buffer = Buffer::from(input);
389
390        let bitchunks = buffer.bit_chunks(0, 64);
391        let result = bitchunks.into_iter().collect::<Vec<_>>();
392
393        assert_eq!(vec![0x0706050403020100], result);
394    }
395
396    #[test]
397    fn test_iter_unaligned() {
398        let input: &[u8] = &[
399            0b00000000, 0b00000001, 0b00000010, 0b00000100, 0b00001000, 0b00010000, 0b00100000,
400            0b01000000, 0b11111111,
401        ];
402        let buffer: Buffer = Buffer::from(input);
403
404        let bitchunks = buffer.bit_chunks(4, 64);
405
406        assert_eq!(0, bitchunks.remainder_len());
407        assert_eq!(0, bitchunks.remainder_bits());
408
409        let result = bitchunks.into_iter().collect::<Vec<_>>();
410
411        assert_eq!(
412            vec![0b1111010000000010000000010000000010000000010000000010000000010000],
413            result
414        );
415    }
416
417    #[test]
418    fn test_iter_unaligned_remainder_1_byte() {
419        let input: &[u8] = &[
420            0b00000000, 0b00000001, 0b00000010, 0b00000100, 0b00001000, 0b00010000, 0b00100000,
421            0b01000000, 0b11111111,
422        ];
423        let buffer: Buffer = Buffer::from(input);
424
425        let bitchunks = buffer.bit_chunks(4, 66);
426
427        assert_eq!(2, bitchunks.remainder_len());
428        assert_eq!(0b00000011, bitchunks.remainder_bits());
429
430        let result = bitchunks.into_iter().collect::<Vec<_>>();
431
432        assert_eq!(
433            vec![0b1111010000000010000000010000000010000000010000000010000000010000],
434            result
435        );
436    }
437
438    #[test]
439    fn test_iter_unaligned_remainder_bits_across_bytes() {
440        let input: &[u8] = &[0b00111111, 0b11111100];
441        let buffer: Buffer = Buffer::from(input);
442
443        // remainder contains bits from both bytes
444        // result should be the highest 2 bits from first byte followed by lowest 5 bits of second bytes
445        let bitchunks = buffer.bit_chunks(6, 7);
446
447        assert_eq!(7, bitchunks.remainder_len());
448        assert_eq!(0b1110000, bitchunks.remainder_bits());
449    }
450
451    #[test]
452    fn test_iter_unaligned_remainder_bits_large() {
453        let input: &[u8] = &[
454            0b11111111, 0b00000000, 0b11111111, 0b00000000, 0b11111111, 0b00000000, 0b11111111,
455            0b00000000, 0b11111111,
456        ];
457        let buffer: Buffer = Buffer::from(input);
458
459        let bitchunks = buffer.bit_chunks(2, 63);
460
461        assert_eq!(63, bitchunks.remainder_len());
462        assert_eq!(
463            0b100_0000_0011_1111_1100_0000_0011_1111_1100_0000_0011_1111_1100_0000_0011_1111,
464            bitchunks.remainder_bits()
465        );
466    }
467
468    #[test]
469    fn test_iter_remainder_out_of_bounds() {
470        // allocating a full page should trigger a fault when reading out of bounds
471        const ALLOC_SIZE: usize = 4 * 1024;
472        let input = vec![0xFF_u8; ALLOC_SIZE];
473
474        let buffer: Buffer = Buffer::from_vec(input);
475
476        let bitchunks = buffer.bit_chunks(57, ALLOC_SIZE * 8 - 57);
477
478        assert_eq!(u64::MAX, bitchunks.iter().last().unwrap());
479        assert_eq!(0x7F, bitchunks.remainder_bits());
480    }
481
482    #[test]
483    #[should_panic(expected = "offset + len out of bounds")]
484    fn test_out_of_bound_should_panic_length_is_more_than_buffer_length() {
485        const ALLOC_SIZE: usize = 4 * 1024;
486        let input = vec![0xFF_u8; ALLOC_SIZE];
487
488        let buffer: Buffer = Buffer::from_vec(input);
489
490        // We are reading more than exists in the buffer
491        buffer.bit_chunks(0, (ALLOC_SIZE + 1) * 8);
492    }
493
494    #[test]
495    #[should_panic(expected = "offset + len out of bounds")]
496    fn test_out_of_bound_should_panic_length_is_more_than_buffer_length_but_not_when_not_using_ceil()
497     {
498        const ALLOC_SIZE: usize = 4 * 1024;
499        let input = vec![0xFF_u8; ALLOC_SIZE];
500
501        let buffer: Buffer = Buffer::from_vec(input);
502
503        // We are reading more than exists in the buffer
504        buffer.bit_chunks(0, (ALLOC_SIZE * 8) + 1);
505    }
506
507    #[test]
508    #[should_panic(expected = "offset + len out of bounds")]
509    fn test_out_of_bound_should_panic_when_offset_is_not_zero_and_length_is_the_entire_buffer_length()
510     {
511        const ALLOC_SIZE: usize = 4 * 1024;
512        let input = vec![0xFF_u8; ALLOC_SIZE];
513
514        let buffer: Buffer = Buffer::from_vec(input);
515
516        // We are reading more than exists in the buffer
517        buffer.bit_chunks(8, ALLOC_SIZE * 8);
518    }
519
520    #[test]
521    #[should_panic(expected = "offset + len out of bounds")]
522    fn test_out_of_bound_should_panic_when_offset_is_not_zero_and_length_is_the_entire_buffer_length_with_ceil()
523     {
524        const ALLOC_SIZE: usize = 4 * 1024;
525        let input = vec![0xFF_u8; ALLOC_SIZE];
526
527        let buffer: Buffer = Buffer::from_vec(input);
528
529        // We are reading more than exists in the buffer
530        buffer.bit_chunks(1, ALLOC_SIZE * 8);
531    }
532
533    #[test]
534    #[allow(clippy::assertions_on_constants)]
535    fn test_unaligned_bit_chunk_iterator() {
536        let buffer = Buffer::from(&[0xFF; 5]);
537        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 0, 40);
538
539        assert!(unaligned.chunks().is_empty()); // Less than 128 elements
540        assert_eq!(unaligned.lead_padding(), 0);
541        assert_eq!(unaligned.trailing_padding(), 24);
542        // 24x 1 bit then 40x 0 bits
543        assert_eq!(
544            unaligned.prefix(),
545            Some(0b0000000000000000000000001111111111111111111111111111111111111111)
546        );
547        assert_eq!(unaligned.suffix(), None);
548
549        let buffer = buffer.slice(1);
550        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 0, 32);
551
552        assert!(unaligned.chunks().is_empty()); // Less than 128 elements
553        assert_eq!(unaligned.lead_padding(), 0);
554        assert_eq!(unaligned.trailing_padding(), 32);
555        // 32x 1 bit then 32x 0 bits
556        assert_eq!(
557            unaligned.prefix(),
558            Some(0b0000000000000000000000000000000011111111111111111111111111111111)
559        );
560        assert_eq!(unaligned.suffix(), None);
561
562        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 5, 27);
563
564        assert!(unaligned.chunks().is_empty()); // Less than 128 elements
565        assert_eq!(unaligned.lead_padding(), 5); // 5 % 8 == 5
566        assert_eq!(unaligned.trailing_padding(), 32);
567        // 5x 0 bit, 27x 1 bit then 32x 0 bits
568        assert_eq!(
569            unaligned.prefix(),
570            Some(0b0000000000000000000000000000000011111111111111111111111111100000)
571        );
572        assert_eq!(unaligned.suffix(), None);
573
574        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 12, 20);
575
576        assert!(unaligned.chunks().is_empty()); // Less than 128 elements
577        assert_eq!(unaligned.lead_padding(), 4); // 12 % 8 == 4
578        assert_eq!(unaligned.trailing_padding(), 40);
579        // 4x 0 bit, 20x 1 bit then 40x 0 bits
580        assert_eq!(
581            unaligned.prefix(),
582            Some(0b0000000000000000000000000000000000000000111111111111111111110000)
583        );
584        assert_eq!(unaligned.suffix(), None);
585
586        let buffer = Buffer::from(&[0xFF; 14]);
587
588        // Verify buffer alignment
589        let (prefix, aligned, suffix) = unsafe { buffer.as_slice().align_to::<u64>() };
590        assert_eq!(prefix.len(), 0);
591        assert_eq!(aligned.len(), 1);
592        assert_eq!(suffix.len(), 6);
593
594        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 0, 112);
595
596        assert!(unaligned.chunks().is_empty()); // Less than 128 elements
597        assert_eq!(unaligned.lead_padding(), 0); // No offset and buffer aligned on 64-bit boundary
598        assert_eq!(unaligned.trailing_padding(), 16);
599        assert_eq!(unaligned.prefix(), Some(u64::MAX));
600        assert_eq!(unaligned.suffix(), Some((1 << 48) - 1));
601
602        let buffer = Buffer::from(&[0xFF; 16]);
603
604        // Verify buffer alignment
605        let (prefix, aligned, suffix) = unsafe { buffer.as_slice().align_to::<u64>() };
606        assert_eq!(prefix.len(), 0);
607        assert_eq!(aligned.len(), 2);
608        assert_eq!(suffix.len(), 0);
609
610        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 0, 128);
611
612        assert_eq!(unaligned.prefix(), Some(u64::MAX));
613        assert_eq!(unaligned.suffix(), Some(u64::MAX));
614        assert!(unaligned.chunks().is_empty()); // Exactly 128 elements
615
616        let buffer = Buffer::from(&[0xFF; 64]);
617
618        // Verify buffer alignment
619        let (prefix, aligned, suffix) = unsafe { buffer.as_slice().align_to::<u64>() };
620        assert_eq!(prefix.len(), 0);
621        assert_eq!(aligned.len(), 8);
622        assert_eq!(suffix.len(), 0);
623
624        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 0, 512);
625
626        // Buffer is completely aligned and larger than 128 elements -> all in chunks array
627        assert_eq!(unaligned.suffix(), None);
628        assert_eq!(unaligned.prefix(), None);
629        assert_eq!(unaligned.chunks(), [u64::MAX; 8].as_slice());
630        assert_eq!(unaligned.lead_padding(), 0);
631        assert_eq!(unaligned.trailing_padding(), 0);
632
633        let buffer = buffer.slice(1); // Offset buffer 1 byte off 64-bit alignment
634
635        // Verify buffer alignment
636        let (prefix, aligned, suffix) = unsafe { buffer.as_slice().align_to::<u64>() };
637        assert_eq!(prefix.len(), 7);
638        assert_eq!(aligned.len(), 7);
639        assert_eq!(suffix.len(), 0);
640
641        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 0, 504);
642
643        // Need a prefix with 1 byte of lead padding to bring the buffer into alignment
644        assert_eq!(unaligned.prefix(), Some(u64::MAX - 0xFF));
645        assert_eq!(unaligned.suffix(), None);
646        assert_eq!(unaligned.chunks(), [u64::MAX; 7].as_slice());
647        assert_eq!(unaligned.lead_padding(), 8);
648        assert_eq!(unaligned.trailing_padding(), 0);
649
650        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 17, 300);
651
652        // Out of 64-bit alignment by 8 bits from buffer, and 17 bits from provided offset
653        //   => need 8 + 17 = 25 bits of lead padding + 39 bits in prefix
654        //
655        // This leaves 300 - 17 = 261 bits remaining
656        //   => 4x 64-bit aligned 64-bit chunks + 5 remaining bits
657        //   => trailing padding of 59 bits
658        assert_eq!(unaligned.lead_padding(), 25);
659        assert_eq!(unaligned.trailing_padding(), 59);
660        assert_eq!(unaligned.prefix(), Some(u64::MAX - (1 << 25) + 1));
661        assert_eq!(unaligned.suffix(), Some(0b11111));
662        assert_eq!(unaligned.chunks(), [u64::MAX; 4].as_slice());
663
664        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 17, 0);
665
666        assert_eq!(unaligned.prefix(), None);
667        assert_eq!(unaligned.suffix(), None);
668        assert!(unaligned.chunks().is_empty());
669        assert_eq!(unaligned.lead_padding(), 0);
670        assert_eq!(unaligned.trailing_padding(), 0);
671
672        let unaligned = UnalignedBitChunk::new(buffer.as_slice(), 17, 1);
673
674        assert_eq!(unaligned.prefix(), Some(2));
675        assert_eq!(unaligned.suffix(), None);
676        assert!(unaligned.chunks().is_empty());
677        assert_eq!(unaligned.lead_padding(), 1);
678        assert_eq!(unaligned.trailing_padding(), 62);
679    }
680
681    #[test]
682    #[cfg_attr(miri, ignore)]
683    fn fuzz_unaligned_bit_chunk_iterator() {
684        let mut rng = rng();
685
686        let uusize = UniformUsize::new(usize::MIN, usize::MAX).unwrap();
687        for _ in 0..100 {
688            let mask_len = rng.random_range(0..1024);
689            let bools: Vec<_> = std::iter::from_fn(|| Some(rng.random()))
690                .take(mask_len)
691                .collect();
692
693            let buffer = Buffer::from_iter(bools.iter().cloned());
694
695            let max_offset = 64.min(mask_len);
696            let offset = uusize.sample(&mut rng).checked_rem(max_offset).unwrap_or(0);
697
698            let max_truncate = 128.min(mask_len - offset);
699            let truncate = uusize
700                .sample(&mut rng)
701                .checked_rem(max_truncate)
702                .unwrap_or(0);
703
704            let unaligned =
705                UnalignedBitChunk::new(buffer.as_slice(), offset, mask_len - offset - truncate);
706
707            let bool_slice = &bools[offset..mask_len - truncate];
708
709            let count = unaligned.count_ones();
710            let expected_count = bool_slice.iter().filter(|x| **x).count();
711
712            assert_eq!(count, expected_count);
713
714            let collected: Vec<u64> = unaligned.iter().collect();
715
716            let get_bit = |idx: usize| -> bool {
717                let padded_index = idx + unaligned.lead_padding();
718                let byte_idx = padded_index / 64;
719                let bit_idx = padded_index % 64;
720                (collected[byte_idx] & (1 << bit_idx)) != 0
721            };
722
723            for (idx, b) in bool_slice.iter().enumerate() {
724                assert_eq!(*b, get_bit(idx))
725            }
726        }
727    }
728}