1use crate::arith::derive_arith;
19use crate::bigint::div::div_rem;
20use num::cast::AsPrimitive;
21use num::{BigInt, FromPrimitive, ToPrimitive};
22use std::cmp::Ordering;
23use std::num::ParseIntError;
24use std::ops::{BitAnd, BitOr, BitXor, Neg, Shl, Shr};
25use std::str::FromStr;
26
27mod div;
28
29#[derive(Debug)]
31pub struct ParseI256Error {}
32
33impl From<ParseIntError> for ParseI256Error {
34 fn from(_: ParseIntError) -> Self {
35 Self {}
36 }
37}
38
39impl std::fmt::Display for ParseI256Error {
40 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
41 write!(f, "Failed to parse as i256")
42 }
43}
44impl std::error::Error for ParseI256Error {}
45
46enum DivRemError {
48 DivideByZero,
50 DivideOverflow,
52}
53
54#[allow(non_camel_case_types)]
56#[derive(Copy, Clone, Default, Eq, PartialEq, Hash)]
57#[repr(C)]
58pub struct i256 {
59 low: u128,
60 high: i128,
61}
62
63impl std::fmt::Debug for i256 {
64 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
65 write!(f, "{self}")
66 }
67}
68
69impl std::fmt::Display for i256 {
70 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
71 write!(f, "{}", BigInt::from_signed_bytes_le(&self.to_le_bytes()))
72 }
73}
74
75impl FromStr for i256 {
76 type Err = ParseI256Error;
77
78 fn from_str(s: &str) -> Result<Self, Self::Err> {
79 if s.len() <= 38 {
81 return Ok(Self::from_i128(i128::from_str(s)?));
82 }
83
84 let (negative, s) = match s.as_bytes()[0] {
85 b'-' => (true, &s[1..]),
86 b'+' => (false, &s[1..]),
87 _ => (false, s),
88 };
89
90 let s = s.trim_start_matches('0');
92 if s.is_empty() {
93 return Ok(i256::ZERO);
94 }
95
96 if !s.as_bytes()[0].is_ascii_digit() {
97 return Err(ParseI256Error {});
99 }
100
101 parse_impl(s, negative)
102 }
103}
104
105impl From<i8> for i256 {
106 fn from(value: i8) -> Self {
107 Self::from_i128(value.into())
108 }
109}
110
111impl From<i16> for i256 {
112 fn from(value: i16) -> Self {
113 Self::from_i128(value.into())
114 }
115}
116
117impl From<i32> for i256 {
118 fn from(value: i32) -> Self {
119 Self::from_i128(value.into())
120 }
121}
122
123impl From<i64> for i256 {
124 fn from(value: i64) -> Self {
125 Self::from_i128(value.into())
126 }
127}
128
129fn parse_impl(s: &str, negative: bool) -> Result<i256, ParseI256Error> {
131 if s.len() <= 38 {
132 let low = i128::from_str(s)?;
133 return Ok(match negative {
134 true => i256::from_parts(low.neg() as _, -1),
135 false => i256::from_parts(low as _, 0),
136 });
137 }
138
139 let split = s.len() - 38;
140 if !s.as_bytes()[split].is_ascii_digit() {
141 return Err(ParseI256Error {});
143 }
144 let (hs, ls) = s.split_at(split);
145
146 let mut low = i128::from_str(ls)?;
147 let high = parse_impl(hs, negative)?;
148
149 if negative {
150 low = -low;
151 }
152
153 let low = i256::from_i128(low);
154
155 high.checked_mul(i256::from_i128(10_i128.pow(38)))
156 .and_then(|high| high.checked_add(low))
157 .ok_or(ParseI256Error {})
158}
159
160impl PartialOrd for i256 {
161 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
162 Some(self.cmp(other))
163 }
164}
165
166impl Ord for i256 {
167 fn cmp(&self, other: &Self) -> Ordering {
168 self.high.cmp(&other.high).then(self.low.cmp(&other.low))
171 }
172}
173
174impl i256 {
175 pub const ZERO: Self = i256 { low: 0, high: 0 };
177
178 pub const ONE: Self = i256 { low: 1, high: 0 };
180
181 pub const MINUS_ONE: Self = i256 {
183 low: u128::MAX,
184 high: -1,
185 };
186
187 pub const MAX: Self = i256 {
189 low: u128::MAX,
190 high: i128::MAX,
191 };
192
193 pub const MIN: Self = i256 {
195 low: u128::MIN,
196 high: i128::MIN,
197 };
198
199 #[inline]
201 pub const fn from_le_bytes(b: [u8; 32]) -> Self {
202 let (low, high) = split_array(b);
203 Self {
204 high: i128::from_le_bytes(high),
205 low: u128::from_le_bytes(low),
206 }
207 }
208
209 #[inline]
211 pub const fn from_be_bytes(b: [u8; 32]) -> Self {
212 let (high, low) = split_array(b);
213 Self {
214 high: i128::from_be_bytes(high),
215 low: u128::from_be_bytes(low),
216 }
217 }
218
219 pub const fn from_i128(v: i128) -> Self {
221 Self::from_parts(v as u128, v >> 127)
222 }
223
224 #[inline]
226 pub fn from_string(value_str: &str) -> Option<Self> {
227 value_str.parse().ok()
228 }
229
230 pub fn from_f64(v: f64) -> Option<Self> {
233 BigInt::from_f64(v).and_then(|i| {
234 let (integer, overflow) = i256::from_bigint_with_overflow(i);
235 if overflow {
236 None
237 } else {
238 Some(integer)
239 }
240 })
241 }
242
243 #[inline]
245 pub const fn from_parts(low: u128, high: i128) -> Self {
246 Self { low, high }
247 }
248
249 pub const fn to_parts(self) -> (u128, i128) {
251 (self.low, self.high)
252 }
253
254 pub fn to_i128(self) -> Option<i128> {
257 let as_i128 = self.low as i128;
258
259 let high_negative = self.high < 0;
260 let low_negative = as_i128 < 0;
261 let high_valid = self.high == -1 || self.high == 0;
262
263 (high_negative == low_negative && high_valid).then_some(self.low as i128)
264 }
265
266 pub fn as_i128(self) -> i128 {
268 self.low as i128
269 }
270
271 #[inline]
273 pub const fn to_le_bytes(self) -> [u8; 32] {
274 let low = self.low.to_le_bytes();
275 let high = self.high.to_le_bytes();
276 let mut t = [0; 32];
277 let mut i = 0;
278 while i != 16 {
279 t[i] = low[i];
280 t[i + 16] = high[i];
281 i += 1;
282 }
283 t
284 }
285
286 #[inline]
288 pub const fn to_be_bytes(self) -> [u8; 32] {
289 let low = self.low.to_be_bytes();
290 let high = self.high.to_be_bytes();
291 let mut t = [0; 32];
292 let mut i = 0;
293 while i != 16 {
294 t[i] = high[i];
295 t[i + 16] = low[i];
296 i += 1;
297 }
298 t
299 }
300
301 fn from_bigint_with_overflow(v: BigInt) -> (Self, bool) {
304 let v_bytes = v.to_signed_bytes_le();
305 match v_bytes.len().cmp(&32) {
306 Ordering::Less => {
307 let mut bytes = if num::Signed::is_negative(&v) {
308 [255_u8; 32]
309 } else {
310 [0; 32]
311 };
312 bytes[0..v_bytes.len()].copy_from_slice(&v_bytes[..v_bytes.len()]);
313 (Self::from_le_bytes(bytes), false)
314 }
315 Ordering::Equal => (Self::from_le_bytes(v_bytes.try_into().unwrap()), false),
316 Ordering::Greater => (Self::from_le_bytes(v_bytes[..32].try_into().unwrap()), true),
317 }
318 }
319
320 #[inline]
322 pub fn wrapping_abs(self) -> Self {
323 let sa = self.high >> 127;
325 let sa = Self::from_parts(sa as u128, sa);
326
327 Self::from_parts(self.low ^ sa.low, self.high ^ sa.high).wrapping_sub(sa)
329 }
330
331 #[inline]
333 pub fn checked_abs(self) -> Option<Self> {
334 (self != Self::MIN).then(|| self.wrapping_abs())
335 }
336
337 #[inline]
339 pub fn wrapping_neg(self) -> Self {
340 Self::from_parts(!self.low, !self.high).wrapping_add(i256::ONE)
341 }
342
343 #[inline]
345 pub fn checked_neg(self) -> Option<Self> {
346 (self != Self::MIN).then(|| self.wrapping_neg())
347 }
348
349 #[inline]
351 pub fn wrapping_add(self, other: Self) -> Self {
352 let (low, carry) = self.low.overflowing_add(other.low);
353 let high = self.high.wrapping_add(other.high).wrapping_add(carry as _);
354 Self { low, high }
355 }
356
357 #[inline]
359 pub fn checked_add(self, other: Self) -> Option<Self> {
360 let r = self.wrapping_add(other);
361 ((other.is_negative() && r < self) || (!other.is_negative() && r >= self)).then_some(r)
362 }
363
364 #[inline]
366 pub fn wrapping_sub(self, other: Self) -> Self {
367 let (low, carry) = self.low.overflowing_sub(other.low);
368 let high = self.high.wrapping_sub(other.high).wrapping_sub(carry as _);
369 Self { low, high }
370 }
371
372 #[inline]
374 pub fn checked_sub(self, other: Self) -> Option<Self> {
375 let r = self.wrapping_sub(other);
376 ((other.is_negative() && r > self) || (!other.is_negative() && r <= self)).then_some(r)
377 }
378
379 #[inline]
381 pub fn wrapping_mul(self, other: Self) -> Self {
382 let (low, high) = mulx(self.low, other.low);
383
384 let hl = self.high.wrapping_mul(other.low as i128);
386 let lh = (self.low as i128).wrapping_mul(other.high);
387
388 Self {
389 low,
390 high: (high as i128).wrapping_add(hl).wrapping_add(lh),
391 }
392 }
393
394 #[inline]
396 pub fn checked_mul(self, other: Self) -> Option<Self> {
397 if self == i256::ZERO || other == i256::ZERO {
398 return Some(i256::ZERO);
399 }
400
401 let l_sa = self.high >> 127;
403 let r_sa = other.high >> 127;
404 let out_sa = (l_sa ^ r_sa) as u128;
405
406 let l_abs = self.wrapping_abs();
408 let r_abs = other.wrapping_abs();
409
410 if l_abs.high != 0 && r_abs.high != 0 {
412 return None;
413 }
414
415 let (low, high) = mulx(l_abs.low, r_abs.low);
417
418 let hl = (l_abs.high as u128).checked_mul(r_abs.low)?;
420 let lh = l_abs.low.checked_mul(r_abs.high as u128)?;
421
422 let high = high.checked_add(hl)?.checked_add(lh)?;
423
424 let (low, c) = (low ^ out_sa).overflowing_sub(out_sa);
426 let high = (high ^ out_sa).wrapping_sub(out_sa).wrapping_sub(c as u128) as i128;
427
428 (high.is_negative() == (self.is_negative() ^ other.is_negative()))
430 .then_some(Self { low, high })
431 }
432
433 #[inline]
436 fn div_rem(self, other: Self) -> Result<(Self, Self), DivRemError> {
437 if other == Self::ZERO {
438 return Err(DivRemError::DivideByZero);
439 }
440 if other == Self::MINUS_ONE && self == Self::MIN {
441 return Err(DivRemError::DivideOverflow);
442 }
443
444 let a = self.wrapping_abs();
445 let b = other.wrapping_abs();
446
447 let (div, rem) = div_rem(&a.as_digits(), &b.as_digits());
448 let div = Self::from_digits(div);
449 let rem = Self::from_digits(rem);
450
451 Ok((
452 if self.is_negative() == other.is_negative() {
453 div
454 } else {
455 div.wrapping_neg()
456 },
457 if self.is_negative() {
458 rem.wrapping_neg()
459 } else {
460 rem
461 },
462 ))
463 }
464
465 fn as_digits(self) -> [u64; 4] {
467 [
468 self.low as u64,
469 (self.low >> 64) as u64,
470 self.high as u64,
471 (self.high as u128 >> 64) as u64,
472 ]
473 }
474
475 fn from_digits(digits: [u64; 4]) -> Self {
477 Self::from_parts(
478 digits[0] as u128 | ((digits[1] as u128) << 64),
479 digits[2] as i128 | ((digits[3] as i128) << 64),
480 )
481 }
482
483 #[inline]
485 pub fn wrapping_div(self, other: Self) -> Self {
486 match self.div_rem(other) {
487 Ok((v, _)) => v,
488 Err(DivRemError::DivideByZero) => panic!("attempt to divide by zero"),
489 Err(_) => Self::MIN,
490 }
491 }
492
493 #[inline]
495 pub fn checked_div(self, other: Self) -> Option<Self> {
496 self.div_rem(other).map(|(v, _)| v).ok()
497 }
498
499 #[inline]
501 pub fn wrapping_rem(self, other: Self) -> Self {
502 match self.div_rem(other) {
503 Ok((_, v)) => v,
504 Err(DivRemError::DivideByZero) => panic!("attempt to divide by zero"),
505 Err(_) => Self::ZERO,
506 }
507 }
508
509 #[inline]
511 pub fn checked_rem(self, other: Self) -> Option<Self> {
512 self.div_rem(other).map(|(_, v)| v).ok()
513 }
514
515 #[inline]
517 pub fn checked_pow(self, mut exp: u32) -> Option<Self> {
518 if exp == 0 {
519 return Some(i256::from_i128(1));
520 }
521
522 let mut base = self;
523 let mut acc: Self = i256::from_i128(1);
524
525 while exp > 1 {
526 if (exp & 1) == 1 {
527 acc = acc.checked_mul(base)?;
528 }
529 exp /= 2;
530 base = base.checked_mul(base)?;
531 }
532 acc.checked_mul(base)
537 }
538
539 #[inline]
541 pub fn wrapping_pow(self, mut exp: u32) -> Self {
542 if exp == 0 {
543 return i256::from_i128(1);
544 }
545
546 let mut base = self;
547 let mut acc: Self = i256::from_i128(1);
548
549 while exp > 1 {
550 if (exp & 1) == 1 {
551 acc = acc.wrapping_mul(base);
552 }
553 exp /= 2;
554 base = base.wrapping_mul(base);
555 }
556
557 acc.wrapping_mul(base)
562 }
563
564 pub const fn signum(self) -> Self {
570 if self.is_positive() {
571 i256::ONE
572 } else if self.is_negative() {
573 i256::MINUS_ONE
574 } else {
575 i256::ZERO
576 }
577 }
578
579 #[inline]
581 pub const fn is_negative(self) -> bool {
582 self.high.is_negative()
583 }
584
585 pub const fn is_positive(self) -> bool {
587 self.high.is_positive() || self.high == 0 && self.low != 0
588 }
589
590 fn leading_zeros(&self) -> u32 {
591 match self.high {
592 0 => u128::BITS + self.low.leading_zeros(),
593 _ => self.high.leading_zeros(),
594 }
595 }
596
597 fn redundant_leading_sign_bits_i256(n: i256) -> u8 {
598 let mask = n >> 255; ((n ^ mask).leading_zeros() - 1) as u8 }
601
602 fn i256_to_f64(input: i256) -> f64 {
603 let k = i256::redundant_leading_sign_bits_i256(input);
604 let n = input << k; let n = (n.high >> 64) as i64; (n as f64) * f64::powi(2.0, 192 - (k as i32)) }
608}
609
610const fn split_array<const N: usize, const M: usize>(vals: [u8; N]) -> ([u8; M], [u8; M]) {
613 let mut a = [0; M];
614 let mut b = [0; M];
615 let mut i = 0;
616 while i != M {
617 a[i] = vals[i];
618 b[i] = vals[i + M];
619 i += 1;
620 }
621 (a, b)
622}
623
624#[inline]
630fn mulx(a: u128, b: u128) -> (u128, u128) {
631 let split = |a: u128| (a & (u64::MAX as u128), a >> 64);
632
633 const MASK: u128 = u64::MAX as _;
634
635 let (a_low, a_high) = split(a);
636 let (b_low, b_high) = split(b);
637
638 let (mut low, mut carry) = split(a_low * b_low);
640 carry += a_high * b_low;
641
642 low += carry << 64;
644 let mut high = carry >> 64;
645
646 carry = low >> 64;
648 low &= MASK;
649
650 carry += b_high * a_low;
652
653 low += carry << 64;
655 high += carry >> 64;
656
657 high += a_high * b_high;
659
660 (low, high)
661}
662
663derive_arith!(
664 i256,
665 Add,
666 AddAssign,
667 add,
668 add_assign,
669 wrapping_add,
670 checked_add
671);
672derive_arith!(
673 i256,
674 Sub,
675 SubAssign,
676 sub,
677 sub_assign,
678 wrapping_sub,
679 checked_sub
680);
681derive_arith!(
682 i256,
683 Mul,
684 MulAssign,
685 mul,
686 mul_assign,
687 wrapping_mul,
688 checked_mul
689);
690derive_arith!(
691 i256,
692 Div,
693 DivAssign,
694 div,
695 div_assign,
696 wrapping_div,
697 checked_div
698);
699derive_arith!(
700 i256,
701 Rem,
702 RemAssign,
703 rem,
704 rem_assign,
705 wrapping_rem,
706 checked_rem
707);
708
709impl Neg for i256 {
710 type Output = i256;
711
712 #[cfg(debug_assertions)]
713 fn neg(self) -> Self::Output {
714 self.checked_neg().expect("i256 overflow")
715 }
716
717 #[cfg(not(debug_assertions))]
718 fn neg(self) -> Self::Output {
719 self.wrapping_neg()
720 }
721}
722
723impl BitAnd for i256 {
724 type Output = i256;
725
726 #[inline]
727 fn bitand(self, rhs: Self) -> Self::Output {
728 Self {
729 low: self.low & rhs.low,
730 high: self.high & rhs.high,
731 }
732 }
733}
734
735impl BitOr for i256 {
736 type Output = i256;
737
738 #[inline]
739 fn bitor(self, rhs: Self) -> Self::Output {
740 Self {
741 low: self.low | rhs.low,
742 high: self.high | rhs.high,
743 }
744 }
745}
746
747impl BitXor for i256 {
748 type Output = i256;
749
750 #[inline]
751 fn bitxor(self, rhs: Self) -> Self::Output {
752 Self {
753 low: self.low ^ rhs.low,
754 high: self.high ^ rhs.high,
755 }
756 }
757}
758
759impl Shl<u8> for i256 {
760 type Output = i256;
761
762 #[inline]
763 fn shl(self, rhs: u8) -> Self::Output {
764 if rhs == 0 {
765 self
766 } else if rhs < 128 {
767 Self {
768 high: (self.high << rhs) | (self.low >> (128 - rhs)) as i128,
769 low: self.low << rhs,
770 }
771 } else {
772 Self {
773 high: (self.low << (rhs - 128)) as i128,
774 low: 0,
775 }
776 }
777 }
778}
779
780impl Shr<u8> for i256 {
781 type Output = i256;
782
783 #[inline]
784 fn shr(self, rhs: u8) -> Self::Output {
785 if rhs == 0 {
786 self
787 } else if rhs < 128 {
788 Self {
789 high: self.high >> rhs,
790 low: (self.low >> rhs) | ((self.high as u128) << (128 - rhs)),
791 }
792 } else {
793 Self {
794 high: self.high >> 127,
795 low: (self.high >> (rhs - 128)) as u128,
796 }
797 }
798 }
799}
800
801macro_rules! define_as_primitive {
802 ($native_ty:ty) => {
803 impl AsPrimitive<i256> for $native_ty {
804 fn as_(self) -> i256 {
805 i256::from_i128(self as i128)
806 }
807 }
808 };
809}
810
811define_as_primitive!(i8);
812define_as_primitive!(i16);
813define_as_primitive!(i32);
814define_as_primitive!(i64);
815define_as_primitive!(u8);
816define_as_primitive!(u16);
817define_as_primitive!(u32);
818define_as_primitive!(u64);
819
820impl ToPrimitive for i256 {
821 fn to_i64(&self) -> Option<i64> {
822 let as_i128 = self.low as i128;
823
824 let high_negative = self.high < 0;
825 let low_negative = as_i128 < 0;
826 let high_valid = self.high == -1 || self.high == 0;
827
828 if high_negative == low_negative && high_valid {
829 let (low_bytes, high_bytes) = split_array(u128::to_le_bytes(self.low));
830 let high = i64::from_le_bytes(high_bytes);
831 let low = i64::from_le_bytes(low_bytes);
832
833 let high_negative = high < 0;
834 let low_negative = low < 0;
835 let high_valid = self.high == -1 || self.high == 0;
836
837 (high_negative == low_negative && high_valid).then_some(low)
838 } else {
839 None
840 }
841 }
842
843 fn to_f64(&self) -> Option<f64> {
844 match *self {
845 Self::MIN => Some(-2_f64.powi(255)),
846 Self::ZERO => Some(0f64),
847 Self::ONE => Some(1f64),
848 n => Some(Self::i256_to_f64(n)),
849 }
850 }
851
852 fn to_u64(&self) -> Option<u64> {
853 let as_i128 = self.low as i128;
854
855 let high_negative = self.high < 0;
856 let low_negative = as_i128 < 0;
857 let high_valid = self.high == -1 || self.high == 0;
858
859 if high_negative == low_negative && high_valid {
860 self.low.to_u64()
861 } else {
862 None
863 }
864 }
865}
866
867#[cfg(all(test, not(miri)))] mod tests {
869 use super::*;
870 use num::Signed;
871 use rand::{rng, Rng};
872
873 #[test]
874 fn test_signed_cmp() {
875 let a = i256::from_parts(i128::MAX as u128, 12);
876 let b = i256::from_parts(i128::MIN as u128, 12);
877 assert!(a < b);
878
879 let a = i256::from_parts(i128::MAX as u128, 12);
880 let b = i256::from_parts(i128::MIN as u128, -12);
881 assert!(a > b);
882 }
883
884 #[test]
885 fn test_to_i128() {
886 let vals = [
887 BigInt::from_i128(-1).unwrap(),
888 BigInt::from_i128(i128::MAX).unwrap(),
889 BigInt::from_i128(i128::MIN).unwrap(),
890 BigInt::from_u128(u128::MIN).unwrap(),
891 BigInt::from_u128(u128::MAX).unwrap(),
892 ];
893
894 for v in vals {
895 let (t, overflow) = i256::from_bigint_with_overflow(v.clone());
896 assert!(!overflow);
897 assert_eq!(t.to_i128(), v.to_i128(), "{v} vs {t}");
898 }
899 }
900
901 fn test_ops(il: i256, ir: i256) {
903 let bl = BigInt::from_signed_bytes_le(&il.to_le_bytes());
904 let br = BigInt::from_signed_bytes_le(&ir.to_le_bytes());
905
906 assert_eq!(il.cmp(&ir), bl.cmp(&br), "{bl} cmp {br}");
908
909 assert_eq!(i256::from_le_bytes(il.to_le_bytes()), il);
911 assert_eq!(i256::from_be_bytes(il.to_be_bytes()), il);
912 assert_eq!(i256::from_le_bytes(ir.to_le_bytes()), ir);
913 assert_eq!(i256::from_be_bytes(ir.to_be_bytes()), ir);
914
915 assert_eq!(il.to_i128(), bl.to_i128(), "{bl}");
917 assert_eq!(ir.to_i128(), br.to_i128(), "{br}");
918
919 let (abs, overflow) = i256::from_bigint_with_overflow(bl.abs());
921 assert_eq!(il.wrapping_abs(), abs);
922 assert_eq!(il.checked_abs().is_none(), overflow);
923
924 let (abs, overflow) = i256::from_bigint_with_overflow(br.abs());
925 assert_eq!(ir.wrapping_abs(), abs);
926 assert_eq!(ir.checked_abs().is_none(), overflow);
927
928 let (neg, overflow) = i256::from_bigint_with_overflow(bl.clone().neg());
930 assert_eq!(il.wrapping_neg(), neg);
931 assert_eq!(il.checked_neg().is_none(), overflow);
932
933 let (neg, overflow) = i256::from_bigint_with_overflow(br.clone().neg());
935 assert_eq!(ir.wrapping_neg(), neg);
936 assert_eq!(ir.checked_neg().is_none(), overflow);
937
938 let actual = il.wrapping_add(ir);
940 let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone() + br.clone());
941 assert_eq!(actual, expected);
942
943 let checked = il.checked_add(ir);
944 match overflow {
945 true => assert!(checked.is_none()),
946 false => assert_eq!(checked, Some(actual)),
947 }
948
949 let actual = il.wrapping_sub(ir);
951 let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone() - br.clone());
952 assert_eq!(actual.to_string(), expected.to_string());
953
954 let checked = il.checked_sub(ir);
955 match overflow {
956 true => assert!(checked.is_none()),
957 false => assert_eq!(checked, Some(actual), "{bl} - {br} = {expected}"),
958 }
959
960 let actual = il.wrapping_mul(ir);
962 let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone() * br.clone());
963 assert_eq!(actual.to_string(), expected.to_string());
964
965 let checked = il.checked_mul(ir);
966 match overflow {
967 true => assert!(
968 checked.is_none(),
969 "{il} * {ir} = {actual} vs {bl} * {br} = {expected}"
970 ),
971 false => assert_eq!(
972 checked,
973 Some(actual),
974 "{il} * {ir} = {actual} vs {bl} * {br} = {expected}"
975 ),
976 }
977
978 if ir != i256::ZERO {
980 let actual = il.wrapping_div(ir);
981 let expected = bl.clone() / br.clone();
982 let checked = il.checked_div(ir);
983
984 if ir == i256::MINUS_ONE && il == i256::MIN {
985 assert_eq!(actual, i256::MIN);
987 assert!(checked.is_none());
988 } else {
989 assert_eq!(actual.to_string(), expected.to_string());
990 assert_eq!(checked.unwrap().to_string(), expected.to_string());
991 }
992 } else {
993 assert!(il.checked_div(ir).is_none());
995 }
996
997 if ir != i256::ZERO {
999 let actual = il.wrapping_rem(ir);
1000 let expected = bl.clone() % br.clone();
1001 let checked = il.checked_rem(ir);
1002
1003 assert_eq!(actual.to_string(), expected.to_string(), "{il} % {ir}");
1004
1005 if ir == i256::MINUS_ONE && il == i256::MIN {
1006 assert!(checked.is_none());
1007 } else {
1008 assert_eq!(checked.unwrap().to_string(), expected.to_string());
1009 }
1010 } else {
1011 assert!(il.checked_rem(ir).is_none());
1013 }
1014
1015 for exp in vec![0, 1, 2, 3, 8, 100].into_iter() {
1017 let actual = il.wrapping_pow(exp);
1018 let (expected, overflow) = i256::from_bigint_with_overflow(bl.clone().pow(exp));
1019 assert_eq!(actual.to_string(), expected.to_string());
1020
1021 let checked = il.checked_pow(exp);
1022 match overflow {
1023 true => assert!(
1024 checked.is_none(),
1025 "{il} ^ {exp} = {actual} vs {bl} * {exp} = {expected}"
1026 ),
1027 false => assert_eq!(
1028 checked,
1029 Some(actual),
1030 "{il} ^ {exp} = {actual} vs {bl} ^ {exp} = {expected}"
1031 ),
1032 }
1033 }
1034
1035 let actual = il & ir;
1037 let (expected, _) = i256::from_bigint_with_overflow(bl.clone() & br.clone());
1038 assert_eq!(actual.to_string(), expected.to_string());
1039
1040 let actual = il | ir;
1041 let (expected, _) = i256::from_bigint_with_overflow(bl.clone() | br.clone());
1042 assert_eq!(actual.to_string(), expected.to_string());
1043
1044 let actual = il ^ ir;
1045 let (expected, _) = i256::from_bigint_with_overflow(bl.clone() ^ br);
1046 assert_eq!(actual.to_string(), expected.to_string());
1047
1048 for shift in [0_u8, 1, 4, 126, 128, 129, 254, 255] {
1049 let actual = il << shift;
1050 let (expected, _) = i256::from_bigint_with_overflow(bl.clone() << shift);
1051 assert_eq!(actual.to_string(), expected.to_string());
1052
1053 let actual = il >> shift;
1054 let (expected, _) = i256::from_bigint_with_overflow(bl.clone() >> shift);
1055 assert_eq!(actual.to_string(), expected.to_string());
1056 }
1057 }
1058
1059 #[test]
1060 fn test_i256() {
1061 let candidates = [
1062 i256::ZERO,
1063 i256::ONE,
1064 i256::MINUS_ONE,
1065 i256::from_i128(2),
1066 i256::from_i128(-2),
1067 i256::from_parts(u128::MAX, 1),
1068 i256::from_parts(u128::MAX, -1),
1069 i256::from_parts(0, 1),
1070 i256::from_parts(0, -1),
1071 i256::from_parts(1, -1),
1072 i256::from_parts(1, 1),
1073 i256::from_parts(0, i128::MAX),
1074 i256::from_parts(0, i128::MIN),
1075 i256::from_parts(1, i128::MAX),
1076 i256::from_parts(1, i128::MIN),
1077 i256::from_parts(u128::MAX, i128::MIN),
1078 i256::from_parts(100, 32),
1079 i256::MIN,
1080 i256::MAX,
1081 i256::MIN >> 1,
1082 i256::MAX >> 1,
1083 i256::ONE << 127,
1084 i256::ONE << 128,
1085 i256::ONE << 129,
1086 i256::MINUS_ONE << 127,
1087 i256::MINUS_ONE << 128,
1088 i256::MINUS_ONE << 129,
1089 ];
1090
1091 for il in candidates {
1092 for ir in candidates {
1093 test_ops(il, ir)
1094 }
1095 }
1096 }
1097
1098 #[test]
1099 fn test_signed_ops() {
1100 assert_eq!(i256::from_i128(1).signum(), i256::ONE);
1102 assert_eq!(i256::from_i128(0).signum(), i256::ZERO);
1103 assert_eq!(i256::from_i128(-0).signum(), i256::ZERO);
1104 assert_eq!(i256::from_i128(-1).signum(), i256::MINUS_ONE);
1105
1106 assert!(i256::from_i128(1).is_positive());
1108 assert!(!i256::from_i128(0).is_positive());
1109 assert!(!i256::from_i128(-0).is_positive());
1110 assert!(!i256::from_i128(-1).is_positive());
1111
1112 assert!(!i256::from_i128(1).is_negative());
1114 assert!(!i256::from_i128(0).is_negative());
1115 assert!(!i256::from_i128(-0).is_negative());
1116 assert!(i256::from_i128(-1).is_negative());
1117 }
1118
1119 #[test]
1120 #[cfg_attr(miri, ignore)]
1121 fn test_i256_fuzz() {
1122 let mut rng = rng();
1123
1124 for _ in 0..1000 {
1125 let mut l = [0_u8; 32];
1126 let len = rng.random_range(0..32);
1127 l.iter_mut().take(len).for_each(|x| *x = rng.random());
1128
1129 let mut r = [0_u8; 32];
1130 let len = rng.random_range(0..32);
1131 r.iter_mut().take(len).for_each(|x| *x = rng.random());
1132
1133 test_ops(i256::from_le_bytes(l), i256::from_le_bytes(r))
1134 }
1135 }
1136
1137 #[test]
1138 fn test_i256_to_primitive() {
1139 let a = i256::MAX;
1140 assert!(a.to_i64().is_none());
1141 assert!(a.to_u64().is_none());
1142
1143 let a = i256::from_i128(i128::MAX);
1144 assert!(a.to_i64().is_none());
1145 assert!(a.to_u64().is_none());
1146
1147 let a = i256::from_i128(i64::MAX as i128);
1148 assert_eq!(a.to_i64().unwrap(), i64::MAX);
1149 assert_eq!(a.to_u64().unwrap(), i64::MAX as u64);
1150
1151 let a = i256::from_i128(i64::MAX as i128 + 1);
1152 assert!(a.to_i64().is_none());
1153 assert_eq!(a.to_u64().unwrap(), i64::MAX as u64 + 1);
1154
1155 let a = i256::MIN;
1156 assert!(a.to_i64().is_none());
1157 assert!(a.to_u64().is_none());
1158
1159 let a = i256::from_i128(i128::MIN);
1160 assert!(a.to_i64().is_none());
1161 assert!(a.to_u64().is_none());
1162
1163 let a = i256::from_i128(i64::MIN as i128);
1164 assert_eq!(a.to_i64().unwrap(), i64::MIN);
1165 assert!(a.to_u64().is_none());
1166
1167 let a = i256::from_i128(i64::MIN as i128 - 1);
1168 assert!(a.to_i64().is_none());
1169 assert!(a.to_u64().is_none());
1170 }
1171
1172 #[test]
1173 fn test_i256_as_i128() {
1174 let a = i256::from_i128(i128::MAX).wrapping_add(i256::from_i128(1));
1175 let i128 = a.as_i128();
1176 assert_eq!(i128, i128::MIN);
1177
1178 let a = i256::from_i128(i128::MAX).wrapping_add(i256::from_i128(2));
1179 let i128 = a.as_i128();
1180 assert_eq!(i128, i128::MIN + 1);
1181
1182 let a = i256::from_i128(i128::MIN).wrapping_sub(i256::from_i128(1));
1183 let i128 = a.as_i128();
1184 assert_eq!(i128, i128::MAX);
1185
1186 let a = i256::from_i128(i128::MIN).wrapping_sub(i256::from_i128(2));
1187 let i128 = a.as_i128();
1188 assert_eq!(i128, i128::MAX - 1);
1189 }
1190
1191 #[test]
1192 fn test_string_roundtrip() {
1193 let roundtrip_cases = [
1194 i256::ZERO,
1195 i256::ONE,
1196 i256::MINUS_ONE,
1197 i256::from_i128(123456789),
1198 i256::from_i128(-123456789),
1199 i256::from_i128(i128::MIN),
1200 i256::from_i128(i128::MAX),
1201 i256::MIN,
1202 i256::MAX,
1203 ];
1204 for case in roundtrip_cases {
1205 let formatted = case.to_string();
1206 let back: i256 = formatted.parse().unwrap();
1207 assert_eq!(case, back);
1208 }
1209 }
1210
1211 #[test]
1212 fn test_from_string() {
1213 let cases = [
1214 (
1215 "000000000000000000000000000000000000000011",
1216 Some(i256::from_i128(11)),
1217 ),
1218 (
1219 "-000000000000000000000000000000000000000011",
1220 Some(i256::from_i128(-11)),
1221 ),
1222 (
1223 "-0000000000000000000000000000000000000000123456789",
1224 Some(i256::from_i128(-123456789)),
1225 ),
1226 ("-", None),
1227 ("+", None),
1228 ("--1", None),
1229 ("-+1", None),
1230 ("000000000000000000000000000000000000000", Some(i256::ZERO)),
1231 ("0000000000000000000000000000000000000000-11", None),
1232 ("11-1111111111111111111111111111111111111", None),
1233 (
1234 "115792089237316195423570985008687907853269984665640564039457584007913129639936",
1235 None,
1236 ),
1237 ];
1238 for (case, expected) in cases {
1239 assert_eq!(i256::from_string(case), expected)
1240 }
1241 }
1242
1243 #[allow(clippy::op_ref)]
1244 fn test_reference_op(il: i256, ir: i256) {
1245 let r1 = il + ir;
1246 let r2 = &il + ir;
1247 let r3 = il + &ir;
1248 let r4 = &il + &ir;
1249 assert_eq!(r1, r2);
1250 assert_eq!(r1, r3);
1251 assert_eq!(r1, r4);
1252
1253 let r1 = il - ir;
1254 let r2 = &il - ir;
1255 let r3 = il - &ir;
1256 let r4 = &il - &ir;
1257 assert_eq!(r1, r2);
1258 assert_eq!(r1, r3);
1259 assert_eq!(r1, r4);
1260
1261 let r1 = il * ir;
1262 let r2 = &il * ir;
1263 let r3 = il * &ir;
1264 let r4 = &il * &ir;
1265 assert_eq!(r1, r2);
1266 assert_eq!(r1, r3);
1267 assert_eq!(r1, r4);
1268
1269 let r1 = il / ir;
1270 let r2 = &il / ir;
1271 let r3 = il / &ir;
1272 let r4 = &il / &ir;
1273 assert_eq!(r1, r2);
1274 assert_eq!(r1, r3);
1275 assert_eq!(r1, r4);
1276 }
1277
1278 #[test]
1279 fn test_i256_reference_op() {
1280 let candidates = [
1281 i256::ONE,
1282 i256::MINUS_ONE,
1283 i256::from_i128(2),
1284 i256::from_i128(-2),
1285 i256::from_i128(3),
1286 i256::from_i128(-3),
1287 ];
1288
1289 for il in candidates {
1290 for ir in candidates {
1291 test_reference_op(il, ir)
1292 }
1293 }
1294 }
1295
1296 #[test]
1297 fn test_decimal256_to_f64_typical_values() {
1298 let v = i256::from_i128(42_i128);
1299 assert_eq!(v.to_f64().unwrap(), 42.0);
1300
1301 let v = i256::from_i128(-123456789012345678i128);
1302 assert_eq!(v.to_f64().unwrap(), -123456789012345678.0);
1303
1304 let v = i256::from_string("0").unwrap();
1305 assert_eq!(v.to_f64().unwrap(), 0.0);
1306
1307 let v = i256::from_string("1").unwrap();
1308 assert_eq!(v.to_f64().unwrap(), 1.0);
1309
1310 let mut rng = rng();
1311 for _ in 0..10 {
1312 let f64_value =
1313 (rng.random_range(i128::MIN..i128::MAX) as f64) * rng.random_range(0.0..1.0);
1314 let big = i256::from_f64(f64_value).unwrap();
1315 assert_eq!(big.to_f64().unwrap(), f64_value);
1316 }
1317 }
1318
1319 #[test]
1320 fn test_decimal256_to_f64_large_positive_value() {
1321 let max_f = f64::MAX;
1322 let big = i256::from_f64(max_f * 2.0).unwrap_or(i256::MAX);
1323 let out = big.to_f64().unwrap();
1324 assert!(out.is_finite() && out.is_sign_positive());
1325 }
1326
1327 #[test]
1328 fn test_decimal256_to_f64_large_negative_value() {
1329 let max_f = f64::MAX;
1330 let big_neg = i256::from_f64(-(max_f * 2.0)).unwrap_or(i256::MIN);
1331 let out = big_neg.to_f64().unwrap();
1332 assert!(out.is_finite() && out.is_sign_negative());
1333 }
1334}