1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use crate::bit_iterator::{BitIndexIterator, BitIterator, BitSliceIterator};
use crate::buffer::BooleanBuffer;
use crate::{Buffer, MutableBuffer};

/// A [`BooleanBuffer`] used to encode validity for arrow arrays
///
/// As per the [Arrow specification], array validity is encoded in a packed bitmask with a
/// `true` value indicating the corresponding slot is not null, and `false` indicating
/// that it is null.
///
/// [Arrow specification]: https://arrow.apache.org/docs/format/Columnar.html#validity-bitmaps
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct NullBuffer {
    buffer: BooleanBuffer,
    null_count: usize,
}

impl NullBuffer {
    /// Create a new [`NullBuffer`] computing the null count
    pub fn new(buffer: BooleanBuffer) -> Self {
        let null_count = buffer.len() - buffer.count_set_bits();
        Self { buffer, null_count }
    }

    /// Create a new [`NullBuffer`] of length `len` where all values are null
    pub fn new_null(len: usize) -> Self {
        Self {
            buffer: BooleanBuffer::new_unset(len),
            null_count: len,
        }
    }

    /// Create a new [`NullBuffer`] of length `len` where all values are valid
    ///
    /// Note: it is more efficient to not set the null buffer if it is known to be all valid
    pub fn new_valid(len: usize) -> Self {
        Self {
            buffer: BooleanBuffer::new_set(len),
            null_count: 0,
        }
    }

    /// Create a new [`NullBuffer`] with the provided `buffer` and `null_count`
    ///
    /// # Safety
    ///
    /// `buffer` must contain `null_count` `0` bits
    pub unsafe fn new_unchecked(buffer: BooleanBuffer, null_count: usize) -> Self {
        Self { buffer, null_count }
    }

    /// Computes the union of the nulls in two optional [`NullBuffer`]
    ///
    /// This is commonly used by binary operations where the result is NULL if either
    /// of the input values is NULL. Handling the null mask separately in this way
    /// can yield significant performance improvements over an iterator approach
    pub fn union(lhs: Option<&NullBuffer>, rhs: Option<&NullBuffer>) -> Option<NullBuffer> {
        match (lhs, rhs) {
            (Some(lhs), Some(rhs)) => Some(Self::new(lhs.inner() & rhs.inner())),
            (Some(n), None) | (None, Some(n)) => Some(n.clone()),
            (None, None) => None,
        }
    }

    /// Returns true if all nulls in `other` also exist in self
    pub fn contains(&self, other: &NullBuffer) -> bool {
        if other.null_count == 0 {
            return true;
        }
        let lhs = self.inner().bit_chunks().iter_padded();
        let rhs = other.inner().bit_chunks().iter_padded();
        lhs.zip(rhs).all(|(l, r)| (l & !r) == 0)
    }

    /// Returns a new [`NullBuffer`] where each bit in the current null buffer
    /// is repeated `count` times. This is useful for masking the nulls of
    /// the child of a FixedSizeListArray based on its parent
    pub fn expand(&self, count: usize) -> Self {
        let capacity = self.buffer.len().checked_mul(count).unwrap();
        let mut buffer = MutableBuffer::new_null(capacity);

        // Expand each bit within `null_mask` into `element_len`
        // bits, constructing the implicit mask of the child elements
        for i in 0..self.buffer.len() {
            if self.is_null(i) {
                continue;
            }
            for j in 0..count {
                crate::bit_util::set_bit(buffer.as_mut(), i * count + j)
            }
        }
        Self {
            buffer: BooleanBuffer::new(buffer.into(), 0, capacity),
            null_count: self.null_count * count,
        }
    }

    /// Returns the length of this [`NullBuffer`]
    #[inline]
    pub fn len(&self) -> usize {
        self.buffer.len()
    }

    /// Returns the offset of this [`NullBuffer`] in bits
    #[inline]
    pub fn offset(&self) -> usize {
        self.buffer.offset()
    }

    /// Returns true if this [`NullBuffer`] is empty
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.buffer.is_empty()
    }

    /// Returns the null count for this [`NullBuffer`]
    #[inline]
    pub fn null_count(&self) -> usize {
        self.null_count
    }

    /// Returns `true` if the value at `idx` is not null
    #[inline]
    pub fn is_valid(&self, idx: usize) -> bool {
        self.buffer.value(idx)
    }

    /// Returns `true` if the value at `idx` is null
    #[inline]
    pub fn is_null(&self, idx: usize) -> bool {
        !self.is_valid(idx)
    }

    /// Returns the packed validity of this [`NullBuffer`] not including any offset
    #[inline]
    pub fn validity(&self) -> &[u8] {
        self.buffer.values()
    }

    /// Slices this [`NullBuffer`] by the provided `offset` and `length`
    pub fn slice(&self, offset: usize, len: usize) -> Self {
        Self::new(self.buffer.slice(offset, len))
    }

    /// Returns an iterator over the bits in this [`NullBuffer`]
    ///
    /// * `true` indicates that the corresponding value is not NULL
    /// * `false` indicates that the corresponding value is NULL
    ///
    /// Note: [`Self::valid_indices`] will be significantly faster for most use-cases
    pub fn iter(&self) -> BitIterator<'_> {
        self.buffer.iter()
    }

    /// Returns a [`BitIndexIterator`] over the valid indices in this [`NullBuffer`]
    ///
    /// Valid indices indicate the corresponding value is not NULL
    pub fn valid_indices(&self) -> BitIndexIterator<'_> {
        self.buffer.set_indices()
    }

    /// Returns a [`BitSliceIterator`] yielding contiguous ranges of valid indices
    ///
    /// Valid indices indicate the corresponding value is not NULL
    pub fn valid_slices(&self) -> BitSliceIterator<'_> {
        self.buffer.set_slices()
    }

    /// Calls the provided closure for each index in this null mask that is set
    #[inline]
    pub fn try_for_each_valid_idx<E, F: FnMut(usize) -> Result<(), E>>(
        &self,
        f: F,
    ) -> Result<(), E> {
        if self.null_count == self.len() {
            return Ok(());
        }
        self.valid_indices().try_for_each(f)
    }

    /// Returns the inner [`BooleanBuffer`]
    #[inline]
    pub fn inner(&self) -> &BooleanBuffer {
        &self.buffer
    }

    /// Returns the inner [`BooleanBuffer`]
    #[inline]
    pub fn into_inner(self) -> BooleanBuffer {
        self.buffer
    }

    /// Returns the underlying [`Buffer`]
    #[inline]
    pub fn buffer(&self) -> &Buffer {
        self.buffer.inner()
    }
}

impl<'a> IntoIterator for &'a NullBuffer {
    type Item = bool;
    type IntoIter = BitIterator<'a>;

    fn into_iter(self) -> Self::IntoIter {
        self.buffer.iter()
    }
}

impl From<BooleanBuffer> for NullBuffer {
    fn from(value: BooleanBuffer) -> Self {
        Self::new(value)
    }
}

impl From<&[bool]> for NullBuffer {
    fn from(value: &[bool]) -> Self {
        BooleanBuffer::from(value).into()
    }
}

impl From<Vec<bool>> for NullBuffer {
    fn from(value: Vec<bool>) -> Self {
        BooleanBuffer::from(value).into()
    }
}

impl FromIterator<bool> for NullBuffer {
    fn from_iter<T: IntoIterator<Item = bool>>(iter: T) -> Self {
        BooleanBuffer::from_iter(iter).into()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_size() {
        // This tests that the niche optimisation eliminates the overhead of an option
        assert_eq!(
            std::mem::size_of::<NullBuffer>(),
            std::mem::size_of::<Option<NullBuffer>>()
        );
    }
}