1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use crate::bit_iterator::{BitIndexIterator, BitIterator, BitSliceIterator};
use crate::buffer::BooleanBuffer;
use crate::{Buffer, MutableBuffer};
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct NullBuffer {
buffer: BooleanBuffer,
null_count: usize,
}
impl NullBuffer {
/// Create a new [`NullBuffer`] computing the null count
pub fn new(buffer: BooleanBuffer) -> Self {
let null_count = buffer.len() - buffer.count_set_bits();
Self { buffer, null_count }
}
/// Create a new [`NullBuffer`] of length `len` where all values are null
pub fn new_null(len: usize) -> Self {
let buffer = MutableBuffer::new_null(len).into_buffer();
let buffer = BooleanBuffer::new(buffer, 0, len);
Self {
buffer,
null_count: len,
}
}
/// Create a new [`NullBuffer`] with the provided `buffer` and `null_count`
///
/// # Safety
///
/// `buffer` must contain `null_count` `0` bits
pub unsafe fn new_unchecked(buffer: BooleanBuffer, null_count: usize) -> Self {
Self { buffer, null_count }
}
/// Computes the union of the nulls in two optional [`NullBuffer`]
///
/// This is commonly used by binary operations where the result is NULL if either
/// of the input values is NULL. Handling the null mask separately in this way
/// can yield significant performance improvements over an iterator approach
pub fn union(
lhs: Option<&NullBuffer>,
rhs: Option<&NullBuffer>,
) -> Option<NullBuffer> {
match (lhs, rhs) {
(Some(lhs), Some(rhs)) => Some(Self::new(lhs.inner() & rhs.inner())),
(Some(n), None) | (None, Some(n)) => Some(n.clone()),
(None, None) => None,
}
}
/// Returns the length of this [`NullBuffer`]
#[inline]
pub fn len(&self) -> usize {
self.buffer.len()
}
/// Returns the offset of this [`NullBuffer`] in bits
#[inline]
pub fn offset(&self) -> usize {
self.buffer.offset()
}
/// Returns true if this [`NullBuffer`] is empty
#[inline]
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
/// Returns the null count for this [`NullBuffer`]
#[inline]
pub fn null_count(&self) -> usize {
self.null_count
}
/// Returns `true` if the value at `idx` is not null
#[inline]
pub fn is_valid(&self, idx: usize) -> bool {
self.buffer.value(idx)
}
/// Returns `true` if the value at `idx` is null
#[inline]
pub fn is_null(&self, idx: usize) -> bool {
!self.is_valid(idx)
}
/// Returns the packed validity of this [`NullBuffer`] not including any offset
#[inline]
pub fn validity(&self) -> &[u8] {
self.buffer.values()
}
/// Slices this [`NullBuffer`] by the provided `offset` and `length`
pub fn slice(&self, offset: usize, len: usize) -> Self {
Self::new(self.buffer.slice(offset, len))
}
/// Returns an iterator over the bits in this [`NullBuffer`]
///
/// * `true` indicates that the corresponding value is not NULL
/// * `false` indicates that the corresponding value is NULL
///
/// Note: [`Self::valid_indices`] will be significantly faster for most use-cases
pub fn iter(&self) -> BitIterator<'_> {
self.buffer.iter()
}
/// Returns a [`BitIndexIterator`] over the valid indices in this [`NullBuffer`]
///
/// Valid indices indicate the corresponding value is not NULL
pub fn valid_indices(&self) -> BitIndexIterator<'_> {
self.buffer.set_indices()
}
/// Returns a [`BitSliceIterator`] yielding contiguous ranges of valid indices
///
/// Valid indices indicate the corresponding value is not NULL
pub fn valid_slices(&self) -> BitSliceIterator<'_> {
self.buffer.set_slices()
}
/// Calls the provided closure for each index in this null mask that is set
#[inline]
pub fn try_for_each_valid_idx<E, F: FnMut(usize) -> Result<(), E>>(
&self,
f: F,
) -> Result<(), E> {
if self.null_count == self.len() {
return Ok(());
}
self.valid_indices().try_for_each(f)
}
/// Returns the inner [`BooleanBuffer`]
#[inline]
pub fn inner(&self) -> &BooleanBuffer {
&self.buffer
}
/// Returns the inner [`BooleanBuffer`]
#[inline]
pub fn into_inner(self) -> BooleanBuffer {
self.buffer
}
/// Returns the underlying [`Buffer`]
#[inline]
pub fn buffer(&self) -> &Buffer {
self.buffer.inner()
}
}
impl<'a> IntoIterator for &'a NullBuffer {
type Item = bool;
type IntoIter = BitIterator<'a>;
fn into_iter(self) -> Self::IntoIter {
self.buffer.iter()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_size() {
// This tests that the niche optimisation eliminates the overhead of an option
assert_eq!(
std::mem::size_of::<NullBuffer>(),
std::mem::size_of::<Option<NullBuffer>>()
);
}
}