arrow_array/array/byte_view_array.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use crate::array::print_long_array;
19use crate::builder::{ArrayBuilder, GenericByteViewBuilder};
20use crate::iterator::ArrayIter;
21use crate::types::bytes::ByteArrayNativeType;
22use crate::types::{BinaryViewType, ByteViewType, StringViewType};
23use crate::{Array, ArrayAccessor, ArrayRef, GenericByteArray, OffsetSizeTrait, Scalar};
24use arrow_buffer::{ArrowNativeType, Buffer, NullBuffer, ScalarBuffer};
25use arrow_data::{ArrayData, ArrayDataBuilder, ByteView, MAX_INLINE_VIEW_LEN};
26use arrow_schema::{ArrowError, DataType};
27use core::str;
28use num::ToPrimitive;
29use std::any::Any;
30use std::cmp::Ordering;
31use std::fmt::Debug;
32use std::marker::PhantomData;
33use std::sync::Arc;
34
35use super::ByteArrayType;
36
37/// [Variable-size Binary View Layout]: An array of variable length bytes views.
38///
39/// This array type is used to store variable length byte data (e.g. Strings, Binary)
40/// and has efficient operations such as `take`, `filter`, and comparison.
41///
42/// [Variable-size Binary View Layout]: https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
43///
44/// This is different from [`GenericByteArray`], which also stores variable
45/// length byte data, as it represents strings with an offset and length. `take`
46/// and `filter` like operations are implemented by manipulating the "views"
47/// (`u128`) without modifying the bytes. Each view also stores an inlined
48/// prefix which speed up comparisons.
49///
50/// # See Also
51///
52/// * [`StringViewArray`] for storing utf8 encoded string data
53/// * [`BinaryViewArray`] for storing bytes
54/// * [`ByteView`] to interpret `u128`s layout of the views.
55///
56/// [`ByteView`]: arrow_data::ByteView
57///
58/// # Layout: "views" and buffers
59///
60/// A `GenericByteViewArray` stores variable length byte strings. An array of
61/// `N` elements is stored as `N` fixed length "views" and a variable number
62/// of variable length "buffers".
63///
64/// Each view is a `u128` value whose layout is different depending on the
65/// length of the string stored at that location:
66///
67/// ```text
68/// ┌──────┬────────────────────────┐
69/// │length│ string value │
70/// Strings (len <= 12) │ │ (padded with 0) │
71/// └──────┴────────────────────────┘
72/// 0 31 127
73///
74/// ┌───────┬───────┬───────┬───────┐
75/// │length │prefix │ buf │offset │
76/// Strings (len > 12) │ │ │ index │ │
77/// └───────┴───────┴───────┴───────┘
78/// 0 31 63 95 127
79/// ```
80///
81/// * Strings with length <= 12 ([`MAX_INLINE_VIEW_LEN`]) are stored directly in
82/// the view. See [`Self::inline_value`] to access the inlined prefix from a
83/// short view.
84///
85/// * Strings with length > 12: The first four bytes are stored inline in the
86/// view and the entire string is stored in one of the buffers. See [`ByteView`]
87/// to access the fields of the these views.
88///
89/// As with other arrays, the optimized kernels in [`arrow_compute`] are likely
90/// the easiest and fastest way to work with this data. However, it is possible
91/// to access the views and buffers directly for more control.
92///
93/// For example
94///
95/// ```rust
96/// # use arrow_array::StringViewArray;
97/// # use arrow_array::Array;
98/// use arrow_data::ByteView;
99/// let array = StringViewArray::from(vec![
100/// "hello",
101/// "this string is longer than 12 bytes",
102/// "this string is also longer than 12 bytes"
103/// ]);
104///
105/// // ** Examine the first view (short string) **
106/// assert!(array.is_valid(0)); // Check for nulls
107/// let short_view: u128 = array.views()[0]; // "hello"
108/// // get length of the string
109/// let len = short_view as u32;
110/// assert_eq!(len, 5); // strings less than 12 bytes are stored in the view
111/// // SAFETY: `view` is a valid view
112/// let value = unsafe {
113/// StringViewArray::inline_value(&short_view, len as usize)
114/// };
115/// assert_eq!(value, b"hello");
116///
117/// // ** Examine the third view (long string) **
118/// assert!(array.is_valid(12)); // Check for nulls
119/// let long_view: u128 = array.views()[2]; // "this string is also longer than 12 bytes"
120/// let len = long_view as u32;
121/// assert_eq!(len, 40); // strings longer than 12 bytes are stored in the buffer
122/// let view = ByteView::from(long_view); // use ByteView to access the fields
123/// assert_eq!(view.length, 40);
124/// assert_eq!(view.buffer_index, 0);
125/// assert_eq!(view.offset, 35); // data starts after the first long string
126/// // Views for long strings store a 4 byte prefix
127/// let prefix = view.prefix.to_le_bytes();
128/// assert_eq!(&prefix, b"this");
129/// let value = array.value(2); // get the string value (see `value` implementation for how to access the bytes directly)
130/// assert_eq!(value, "this string is also longer than 12 bytes");
131/// ```
132///
133/// [`MAX_INLINE_VIEW_LEN`]: arrow_data::MAX_INLINE_VIEW_LEN
134/// [`arrow_compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
135///
136/// Unlike [`GenericByteArray`], there are no constraints on the offsets other
137/// than they must point into a valid buffer. However, they can be out of order,
138/// non continuous and overlapping.
139///
140/// For example, in the following diagram, the strings "FishWasInTownToday" and
141/// "CrumpleFacedFish" are both longer than 12 bytes and thus are stored in a
142/// separate buffer while the string "LavaMonster" is stored inlined in the
143/// view. In this case, the same bytes for "Fish" are used to store both strings.
144///
145/// [`ByteView`]: arrow_data::ByteView
146///
147/// ```text
148/// ┌───┐
149/// ┌──────┬──────┬──────┬──────┐ offset │...│
150/// "FishWasInTownTodayYay" │ 21 │ Fish │ 0 │ 115 │─ ─ 103 │Mr.│
151/// └──────┴──────┴──────┴──────┘ │ ┌ ─ ─ ─ ─ ▶ │Cru│
152/// ┌──────┬──────┬──────┬──────┐ │mpl│
153/// "CrumpleFacedFish" │ 16 │ Crum │ 0 │ 103 │─ ─│─ ─ ─ ┘ │eFa│
154/// └──────┴──────┴──────┴──────┘ │ced│
155/// ┌──────┬────────────────────┐ └ ─ ─ ─ ─ ─ ─ ─ ─ ▶│Fis│
156/// "LavaMonster" │ 11 │ LavaMonster │ │hWa│
157/// └──────┴────────────────────┘ offset │sIn│
158/// 115 │Tow│
159/// │nTo│
160/// │day│
161/// u128 "views" │Yay│
162/// buffer 0 │...│
163/// └───┘
164/// ```
165pub struct GenericByteViewArray<T: ByteViewType + ?Sized> {
166 data_type: DataType,
167 views: ScalarBuffer<u128>,
168 buffers: Vec<Buffer>,
169 phantom: PhantomData<T>,
170 nulls: Option<NullBuffer>,
171}
172
173impl<T: ByteViewType + ?Sized> Clone for GenericByteViewArray<T> {
174 fn clone(&self) -> Self {
175 Self {
176 data_type: T::DATA_TYPE,
177 views: self.views.clone(),
178 buffers: self.buffers.clone(),
179 nulls: self.nulls.clone(),
180 phantom: Default::default(),
181 }
182 }
183}
184
185impl<T: ByteViewType + ?Sized> GenericByteViewArray<T> {
186 /// Create a new [`GenericByteViewArray`] from the provided parts, panicking on failure
187 ///
188 /// # Panics
189 ///
190 /// Panics if [`GenericByteViewArray::try_new`] returns an error
191 pub fn new(views: ScalarBuffer<u128>, buffers: Vec<Buffer>, nulls: Option<NullBuffer>) -> Self {
192 Self::try_new(views, buffers, nulls).unwrap()
193 }
194
195 /// Create a new [`GenericByteViewArray`] from the provided parts, returning an error on failure
196 ///
197 /// # Errors
198 ///
199 /// * `views.len() != nulls.len()`
200 /// * [ByteViewType::validate] fails
201 pub fn try_new(
202 views: ScalarBuffer<u128>,
203 buffers: Vec<Buffer>,
204 nulls: Option<NullBuffer>,
205 ) -> Result<Self, ArrowError> {
206 T::validate(&views, &buffers)?;
207
208 if let Some(n) = nulls.as_ref() {
209 if n.len() != views.len() {
210 return Err(ArrowError::InvalidArgumentError(format!(
211 "Incorrect length of null buffer for {}ViewArray, expected {} got {}",
212 T::PREFIX,
213 views.len(),
214 n.len(),
215 )));
216 }
217 }
218
219 Ok(Self {
220 data_type: T::DATA_TYPE,
221 views,
222 buffers,
223 nulls,
224 phantom: Default::default(),
225 })
226 }
227
228 /// Create a new [`GenericByteViewArray`] from the provided parts, without validation
229 ///
230 /// # Safety
231 ///
232 /// Safe if [`Self::try_new`] would not error
233 pub unsafe fn new_unchecked(
234 views: ScalarBuffer<u128>,
235 buffers: Vec<Buffer>,
236 nulls: Option<NullBuffer>,
237 ) -> Self {
238 if cfg!(feature = "force_validate") {
239 return Self::new(views, buffers, nulls);
240 }
241
242 Self {
243 data_type: T::DATA_TYPE,
244 phantom: Default::default(),
245 views,
246 buffers,
247 nulls,
248 }
249 }
250
251 /// Create a new [`GenericByteViewArray`] of length `len` where all values are null
252 pub fn new_null(len: usize) -> Self {
253 Self {
254 data_type: T::DATA_TYPE,
255 views: vec![0; len].into(),
256 buffers: vec![],
257 nulls: Some(NullBuffer::new_null(len)),
258 phantom: Default::default(),
259 }
260 }
261
262 /// Create a new [`Scalar`] from `value`
263 pub fn new_scalar(value: impl AsRef<T::Native>) -> Scalar<Self> {
264 Scalar::new(Self::from_iter_values(std::iter::once(value)))
265 }
266
267 /// Creates a [`GenericByteViewArray`] based on an iterator of values without nulls
268 pub fn from_iter_values<Ptr, I>(iter: I) -> Self
269 where
270 Ptr: AsRef<T::Native>,
271 I: IntoIterator<Item = Ptr>,
272 {
273 let iter = iter.into_iter();
274 let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
275 for v in iter {
276 builder.append_value(v);
277 }
278 builder.finish()
279 }
280
281 /// Deconstruct this array into its constituent parts
282 pub fn into_parts(self) -> (ScalarBuffer<u128>, Vec<Buffer>, Option<NullBuffer>) {
283 (self.views, self.buffers, self.nulls)
284 }
285
286 /// Returns the views buffer
287 #[inline]
288 pub fn views(&self) -> &ScalarBuffer<u128> {
289 &self.views
290 }
291
292 /// Returns the buffers storing string data
293 #[inline]
294 pub fn data_buffers(&self) -> &[Buffer] {
295 &self.buffers
296 }
297
298 /// Returns the element at index `i`
299 ///
300 /// Note: This method does not check for nulls and the value is arbitrary
301 /// (but still well-defined) if [`is_null`](Self::is_null) returns true for the index.
302 ///
303 /// # Panics
304 /// Panics if index `i` is out of bounds.
305 pub fn value(&self, i: usize) -> &T::Native {
306 assert!(
307 i < self.len(),
308 "Trying to access an element at index {} from a {}ViewArray of length {}",
309 i,
310 T::PREFIX,
311 self.len()
312 );
313
314 unsafe { self.value_unchecked(i) }
315 }
316
317 /// Returns the element at index `i` without bounds checking
318 ///
319 /// Note: This method does not check for nulls and the value is arbitrary
320 /// if [`is_null`](Self::is_null) returns true for the index.
321 ///
322 /// # Safety
323 ///
324 /// Caller is responsible for ensuring that the index is within the bounds
325 /// of the array
326 pub unsafe fn value_unchecked(&self, idx: usize) -> &T::Native {
327 let v = self.views.get_unchecked(idx);
328 let len = *v as u32;
329 let b = if len <= MAX_INLINE_VIEW_LEN {
330 Self::inline_value(v, len as usize)
331 } else {
332 let view = ByteView::from(*v);
333 let data = self.buffers.get_unchecked(view.buffer_index as usize);
334 let offset = view.offset as usize;
335 data.get_unchecked(offset..offset + len as usize)
336 };
337 T::Native::from_bytes_unchecked(b)
338 }
339
340 /// Returns the first `len` bytes the inline value of the view.
341 ///
342 /// # Safety
343 /// - The `view` must be a valid element from `Self::views()` that adheres to the view layout.
344 /// - The `len` must be the length of the inlined value. It should never be larger than [`MAX_INLINE_VIEW_LEN`].
345 #[inline(always)]
346 pub unsafe fn inline_value(view: &u128, len: usize) -> &[u8] {
347 debug_assert!(len <= MAX_INLINE_VIEW_LEN as usize);
348 std::slice::from_raw_parts((view as *const u128 as *const u8).wrapping_add(4), len)
349 }
350
351 /// Constructs a new iterator for iterating over the values of this array
352 pub fn iter(&self) -> ArrayIter<&Self> {
353 ArrayIter::new(self)
354 }
355
356 /// Returns an iterator over the bytes of this array, including null values
357 pub fn bytes_iter(&self) -> impl Iterator<Item = &[u8]> {
358 self.views.iter().map(move |v| {
359 let len = *v as u32;
360 if len <= MAX_INLINE_VIEW_LEN {
361 unsafe { Self::inline_value(v, len as usize) }
362 } else {
363 let view = ByteView::from(*v);
364 let data = &self.buffers[view.buffer_index as usize];
365 let offset = view.offset as usize;
366 unsafe { data.get_unchecked(offset..offset + len as usize) }
367 }
368 })
369 }
370
371 /// Returns an iterator over the first `prefix_len` bytes of each array
372 /// element, including null values.
373 ///
374 /// If `prefix_len` is larger than the element's length, the iterator will
375 /// return an empty slice (`&[]`).
376 pub fn prefix_bytes_iter(&self, prefix_len: usize) -> impl Iterator<Item = &[u8]> {
377 self.views().into_iter().map(move |v| {
378 let len = (*v as u32) as usize;
379
380 if len < prefix_len {
381 return &[] as &[u8];
382 }
383
384 if prefix_len <= 4 || len as u32 <= MAX_INLINE_VIEW_LEN {
385 unsafe { StringViewArray::inline_value(v, prefix_len) }
386 } else {
387 let view = ByteView::from(*v);
388 let data = unsafe {
389 self.data_buffers()
390 .get_unchecked(view.buffer_index as usize)
391 };
392 let offset = view.offset as usize;
393 unsafe { data.get_unchecked(offset..offset + prefix_len) }
394 }
395 })
396 }
397
398 /// Returns an iterator over the last `suffix_len` bytes of each array
399 /// element, including null values.
400 ///
401 /// Note that for [`StringViewArray`] the last bytes may start in the middle
402 /// of a UTF-8 codepoint, and thus may not be a valid `&str`.
403 ///
404 /// If `suffix_len` is larger than the element's length, the iterator will
405 /// return an empty slice (`&[]`).
406 pub fn suffix_bytes_iter(&self, suffix_len: usize) -> impl Iterator<Item = &[u8]> {
407 self.views().into_iter().map(move |v| {
408 let len = (*v as u32) as usize;
409
410 if len < suffix_len {
411 return &[] as &[u8];
412 }
413
414 if len as u32 <= MAX_INLINE_VIEW_LEN {
415 unsafe { &StringViewArray::inline_value(v, len)[len - suffix_len..] }
416 } else {
417 let view = ByteView::from(*v);
418 let data = unsafe {
419 self.data_buffers()
420 .get_unchecked(view.buffer_index as usize)
421 };
422 let offset = view.offset as usize;
423 unsafe { data.get_unchecked(offset + len - suffix_len..offset + len) }
424 }
425 })
426 }
427
428 /// Returns a zero-copy slice of this array with the indicated offset and length.
429 pub fn slice(&self, offset: usize, length: usize) -> Self {
430 Self {
431 data_type: T::DATA_TYPE,
432 views: self.views.slice(offset, length),
433 buffers: self.buffers.clone(),
434 nulls: self.nulls.as_ref().map(|n| n.slice(offset, length)),
435 phantom: Default::default(),
436 }
437 }
438
439 /// Returns a "compacted" version of this array
440 ///
441 /// The original array will *not* be modified
442 ///
443 /// # Garbage Collection
444 ///
445 /// Before GC:
446 /// ```text
447 /// ┌──────┐
448 /// │......│
449 /// │......│
450 /// ┌────────────────────┐ ┌ ─ ─ ─ ▶ │Data1 │ Large buffer
451 /// │ View 1 │─ ─ ─ ─ │......│ with data that
452 /// ├────────────────────┤ │......│ is not referred
453 /// │ View 2 │─ ─ ─ ─ ─ ─ ─ ─▶ │Data2 │ to by View 1 or
454 /// └────────────────────┘ │......│ View 2
455 /// │......│
456 /// 2 views, refer to │......│
457 /// small portions of a └──────┘
458 /// large buffer
459 /// ```
460 ///
461 /// After GC:
462 ///
463 /// ```text
464 /// ┌────────────────────┐ ┌─────┐ After gc, only
465 /// │ View 1 │─ ─ ─ ─ ─ ─ ─ ─▶ │Data1│ data that is
466 /// ├────────────────────┤ ┌ ─ ─ ─ ▶ │Data2│ pointed to by
467 /// │ View 2 │─ ─ ─ ─ └─────┘ the views is
468 /// └────────────────────┘ left
469 ///
470 ///
471 /// 2 views
472 /// ```
473 /// This method will compact the data buffers by recreating the view array and only include the data
474 /// that is pointed to by the views.
475 ///
476 /// Note that it will copy the array regardless of whether the original array is compact.
477 /// Use with caution as this can be an expensive operation, only use it when you are sure that the view
478 /// array is significantly smaller than when it is originally created, e.g., after filtering or slicing.
479 ///
480 /// Note: this function does not attempt to canonicalize / deduplicate values. For this
481 /// feature see [`GenericByteViewBuilder::with_deduplicate_strings`].
482 pub fn gc(&self) -> Self {
483 // 1) Read basic properties once
484 let len = self.len(); // number of elements
485 let nulls = self.nulls().cloned(); // reuse & clone existing null bitmap
486
487 // 1.5) Fast path: if there are no buffers, just reuse original views and no data blocks
488 if self.data_buffers().is_empty() {
489 return unsafe {
490 GenericByteViewArray::new_unchecked(
491 self.views().clone(),
492 vec![], // empty data blocks
493 nulls,
494 )
495 };
496 }
497
498 // 2) Calculate total size of all non-inline data and detect if any exists
499 let total_large = self.total_buffer_bytes_used();
500
501 // 2.5) Fast path: if there is no non-inline data, avoid buffer allocation & processing
502 if total_large == 0 {
503 // Views are inline-only or all null; just reuse original views and no data blocks
504 return unsafe {
505 GenericByteViewArray::new_unchecked(
506 self.views().clone(),
507 vec![], // empty data blocks
508 nulls,
509 )
510 };
511 }
512
513 // 3) Allocate exactly capacity for all non-inline data
514 let mut data_buf = Vec::with_capacity(total_large);
515
516 // 4) Iterate over views and process each inline/non-inline view
517 let views_buf: Vec<u128> = (0..len)
518 .map(|i| unsafe { self.copy_view_to_buffer(i, &mut data_buf) })
519 .collect();
520
521 // 5) Wrap up buffers
522 let data_block = Buffer::from_vec(data_buf);
523 let views_scalar = ScalarBuffer::from(views_buf);
524 let data_blocks = vec![data_block];
525
526 // SAFETY: views_scalar, data_blocks, and nulls are correctly aligned and sized
527 unsafe { GenericByteViewArray::new_unchecked(views_scalar, data_blocks, nulls) }
528 }
529
530 /// Copy the i‑th view into `data_buf` if it refers to an out‑of‑line buffer.
531 ///
532 /// # Safety
533 ///
534 /// - `i < self.len()`.
535 /// - Every element in `self.views()` must currently refer to a valid slice
536 /// inside one of `self.buffers`.
537 /// - `data_buf` must be ready to have additional bytes appended.
538 /// - After this call, the returned view will have its
539 /// `buffer_index` reset to `0` and its `offset` updated so that it points
540 /// into the bytes just appended at the end of `data_buf`.
541 #[inline(always)]
542 unsafe fn copy_view_to_buffer(&self, i: usize, data_buf: &mut Vec<u8>) -> u128 {
543 // SAFETY: `i < self.len()` ensures this is in‑bounds.
544 let raw_view = *self.views().get_unchecked(i);
545 let mut bv = ByteView::from(raw_view);
546
547 // Inline‑small views stay as‑is.
548 if bv.length <= MAX_INLINE_VIEW_LEN {
549 raw_view
550 } else {
551 // SAFETY: `bv.buffer_index` and `bv.offset..bv.offset+bv.length`
552 // must both lie within valid ranges for `self.buffers`.
553 let buffer = self.buffers.get_unchecked(bv.buffer_index as usize);
554 let start = bv.offset as usize;
555 let end = start + bv.length as usize;
556 let slice = buffer.get_unchecked(start..end);
557
558 // Copy out‑of‑line data into our single “0” buffer.
559 let new_offset = data_buf.len() as u32;
560 data_buf.extend_from_slice(slice);
561
562 bv.buffer_index = 0;
563 bv.offset = new_offset;
564 bv.into()
565 }
566 }
567
568 /// Returns the total number of bytes used by all non inlined views in all
569 /// buffers.
570 ///
571 /// Note this does not account for views that point at the same underlying
572 /// data in buffers
573 ///
574 /// For example, if the array has three strings views:
575 /// * View with length = 9 (inlined)
576 /// * View with length = 32 (non inlined)
577 /// * View with length = 16 (non inlined)
578 ///
579 /// Then this method would report 48
580 pub fn total_buffer_bytes_used(&self) -> usize {
581 self.views()
582 .iter()
583 .map(|v| {
584 let len = *v as u32;
585 if len > MAX_INLINE_VIEW_LEN {
586 len as usize
587 } else {
588 0
589 }
590 })
591 .sum()
592 }
593
594 /// Compare two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
595 ///
596 /// Comparing two ByteView types are non-trivial.
597 /// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
598 ///
599 /// ByteView types give us the following two advantages, and we need to be careful not to lose them:
600 /// (1) For string/byte smaller than [`MAX_INLINE_VIEW_LEN`] bytes, the entire data is inlined in the view.
601 /// Meaning that reading one array element requires only one memory access
602 /// (two memory access required for StringArray, one for offset buffer, the other for value buffer).
603 ///
604 /// (2) For string/byte larger than [`MAX_INLINE_VIEW_LEN`] bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
605 /// thanks to the inlined 4 bytes.
606 /// Consider equality check:
607 /// If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
608 ///
609 /// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
610 /// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
611 /// e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
612 ///
613 /// # Order check flow
614 /// (1) if both string are smaller than [`MAX_INLINE_VIEW_LEN`] bytes, we can directly compare the data inlined to the view.
615 /// (2) if any of the string is larger than [`MAX_INLINE_VIEW_LEN`] bytes, we need to compare the full string.
616 /// (2.1) if the inlined 4 bytes are different, we can return the result immediately.
617 /// (2.2) o.w., we need to compare the full string.
618 ///
619 /// # Safety
620 /// The left/right_idx must within range of each array
621 pub unsafe fn compare_unchecked(
622 left: &GenericByteViewArray<T>,
623 left_idx: usize,
624 right: &GenericByteViewArray<T>,
625 right_idx: usize,
626 ) -> Ordering {
627 let l_view = left.views().get_unchecked(left_idx);
628 let l_byte_view = ByteView::from(*l_view);
629
630 let r_view = right.views().get_unchecked(right_idx);
631 let r_byte_view = ByteView::from(*r_view);
632
633 let l_len = l_byte_view.length;
634 let r_len = r_byte_view.length;
635
636 if l_len <= 12 && r_len <= 12 {
637 return Self::inline_key_fast(*l_view).cmp(&Self::inline_key_fast(*r_view));
638 }
639
640 // one of the string is larger than 12 bytes,
641 // we then try to compare the inlined data first
642
643 // Note: In theory, ByteView is only used for string which is larger than 12 bytes,
644 // but we can still use it to get the inlined prefix for shorter strings.
645 // The prefix is always the first 4 bytes of the view, for both short and long strings.
646 let l_inlined_be = l_byte_view.prefix.swap_bytes();
647 let r_inlined_be = r_byte_view.prefix.swap_bytes();
648 if l_inlined_be != r_inlined_be {
649 return l_inlined_be.cmp(&r_inlined_be);
650 }
651
652 // unfortunately, we need to compare the full data
653 let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
654 let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };
655
656 l_full_data.cmp(r_full_data)
657 }
658
659 /// Builds a 128-bit composite key for an inline value:
660 ///
661 /// - High 96 bits: the inline data in big-endian byte order (for correct lexicographical sorting).
662 /// - Low 32 bits: the length in big-endian byte order, acting as a tiebreaker so shorter strings
663 /// (or those with fewer meaningful bytes) always numerically sort before longer ones.
664 ///
665 /// This function extracts the length and the 12-byte inline string data from the raw
666 /// little-endian `u128` representation, converts them to big-endian ordering, and packs them
667 /// into a single `u128` value suitable for fast, branchless comparisons.
668 ///
669 /// # Why include length?
670 ///
671 /// A pure 96-bit content comparison can’t distinguish between two values whose inline bytes
672 /// compare equal—either because one is a true prefix of the other or because zero-padding
673 /// hides extra bytes. By tucking the 32-bit length into the lower bits, a single `u128` compare
674 /// handles both content and length in one go.
675 ///
676 /// Example: comparing "bar" (3 bytes) vs "bar\0" (4 bytes)
677 ///
678 /// | String | Bytes 0–4 (length LE) | Bytes 4–16 (data + padding) |
679 /// |------------|-----------------------|---------------------------------|
680 /// | `"bar"` | `03 00 00 00` | `62 61 72` + 9 × `00` |
681 /// | `"bar\0"`| `04 00 00 00` | `62 61 72 00` + 8 × `00` |
682 ///
683 /// Both inline parts become `62 61 72 00…00`, so they tie on content. The length field
684 /// then differentiates:
685 ///
686 /// ```text
687 /// key("bar") = 0x0000000000000000000062617200000003
688 /// key("bar\0") = 0x0000000000000000000062617200000004
689 /// ⇒ key("bar") < key("bar\0")
690 /// ```
691 /// # Inlining and Endianness
692 ///
693 /// - We start by calling `.to_le_bytes()` on the `raw` `u128`, because Rust’s native in‑memory
694 /// representation is little‑endian on x86/ARM.
695 /// - We extract the low 32 bits numerically (`raw as u32`)—this step is endianness‑free.
696 /// - We copy the 12 bytes of inline data (original order) into `buf[0..12]`.
697 /// - We serialize `length` as big‑endian into `buf[12..16]`.
698 /// - Finally, `u128::from_be_bytes(buf)` treats `buf[0]` as the most significant byte
699 /// and `buf[15]` as the least significant, producing a `u128` whose integer value
700 /// directly encodes “inline data then length” in big‑endian form.
701 ///
702 /// This ensures that a simple `u128` comparison is equivalent to the desired
703 /// lexicographical comparison of the inline bytes followed by length.
704 #[inline(always)]
705 pub fn inline_key_fast(raw: u128) -> u128 {
706 // 1. Decompose `raw` into little‑endian bytes:
707 // - raw_bytes[0..4] = length in LE
708 // - raw_bytes[4..16] = inline string data
709 let raw_bytes = raw.to_le_bytes();
710
711 // 2. Numerically truncate to get the low 32‑bit length (endianness‑free).
712 let length = raw as u32;
713
714 // 3. Build a 16‑byte buffer in big‑endian order:
715 // - buf[0..12] = inline string bytes (in original order)
716 // - buf[12..16] = length.to_be_bytes() (BE)
717 let mut buf = [0u8; 16];
718 buf[0..12].copy_from_slice(&raw_bytes[4..16]); // inline data
719
720 // Why convert length to big-endian for comparison?
721 //
722 // Rust (on most platforms) stores integers in little-endian format,
723 // meaning the least significant byte is at the lowest memory address.
724 // For example, an u32 value like 0x22345677 is stored in memory as:
725 //
726 // [0x77, 0x56, 0x34, 0x22] // little-endian layout
727 // ^ ^ ^ ^
728 // LSB ↑↑↑ MSB
729 //
730 // This layout is efficient for arithmetic but *not* suitable for
731 // lexicographic (dictionary-style) comparison of byte arrays.
732 //
733 // To compare values by byte order—e.g., for sorted keys or binary trees—
734 // we must convert them to **big-endian**, where:
735 //
736 // - The most significant byte (MSB) comes first (index 0)
737 // - The least significant byte (LSB) comes last (index N-1)
738 //
739 // In big-endian, the same u32 = 0x22345677 would be represented as:
740 //
741 // [0x22, 0x34, 0x56, 0x77]
742 //
743 // This ordering aligns with natural string/byte sorting, so calling
744 // `.to_be_bytes()` allows us to construct
745 // keys where standard numeric comparison (e.g., `<`, `>`) behaves
746 // like lexicographic byte comparison.
747 buf[12..16].copy_from_slice(&length.to_be_bytes()); // length in BE
748
749 // 4. Deserialize the buffer as a big‑endian u128:
750 // buf[0] is MSB, buf[15] is LSB.
751 // Details:
752 // Note on endianness and layout:
753 //
754 // Although `buf[0]` is stored at the lowest memory address,
755 // calling `u128::from_be_bytes(buf)` interprets it as the **most significant byte (MSB)**,
756 // and `buf[15]` as the **least significant byte (LSB)**.
757 //
758 // This is the core principle of **big-endian decoding**:
759 // - Byte at index 0 maps to bits 127..120 (highest)
760 // - Byte at index 1 maps to bits 119..112
761 // - ...
762 // - Byte at index 15 maps to bits 7..0 (lowest)
763 //
764 // So even though memory layout goes from low to high (left to right),
765 // big-endian treats the **first byte** as highest in value.
766 //
767 // This guarantees that comparing two `u128` keys is equivalent to lexicographically
768 // comparing the original inline bytes, followed by length.
769 u128::from_be_bytes(buf)
770 }
771}
772
773impl<T: ByteViewType + ?Sized> Debug for GenericByteViewArray<T> {
774 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
775 write!(f, "{}ViewArray\n[\n", T::PREFIX)?;
776 print_long_array(self, f, |array, index, f| {
777 std::fmt::Debug::fmt(&array.value(index), f)
778 })?;
779 write!(f, "]")
780 }
781}
782
783impl<T: ByteViewType + ?Sized> Array for GenericByteViewArray<T> {
784 fn as_any(&self) -> &dyn Any {
785 self
786 }
787
788 fn to_data(&self) -> ArrayData {
789 self.clone().into()
790 }
791
792 fn into_data(self) -> ArrayData {
793 self.into()
794 }
795
796 fn data_type(&self) -> &DataType {
797 &self.data_type
798 }
799
800 fn slice(&self, offset: usize, length: usize) -> ArrayRef {
801 Arc::new(self.slice(offset, length))
802 }
803
804 fn len(&self) -> usize {
805 self.views.len()
806 }
807
808 fn is_empty(&self) -> bool {
809 self.views.is_empty()
810 }
811
812 fn shrink_to_fit(&mut self) {
813 self.views.shrink_to_fit();
814 self.buffers.iter_mut().for_each(|b| b.shrink_to_fit());
815 self.buffers.shrink_to_fit();
816 if let Some(nulls) = &mut self.nulls {
817 nulls.shrink_to_fit();
818 }
819 }
820
821 fn offset(&self) -> usize {
822 0
823 }
824
825 fn nulls(&self) -> Option<&NullBuffer> {
826 self.nulls.as_ref()
827 }
828
829 fn logical_null_count(&self) -> usize {
830 // More efficient that the default implementation
831 self.null_count()
832 }
833
834 fn get_buffer_memory_size(&self) -> usize {
835 let mut sum = self.buffers.iter().map(|b| b.capacity()).sum::<usize>();
836 sum += self.views.inner().capacity();
837 if let Some(x) = &self.nulls {
838 sum += x.buffer().capacity()
839 }
840 sum
841 }
842
843 fn get_array_memory_size(&self) -> usize {
844 std::mem::size_of::<Self>() + self.get_buffer_memory_size()
845 }
846}
847
848impl<'a, T: ByteViewType + ?Sized> ArrayAccessor for &'a GenericByteViewArray<T> {
849 type Item = &'a T::Native;
850
851 fn value(&self, index: usize) -> Self::Item {
852 GenericByteViewArray::value(self, index)
853 }
854
855 unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
856 GenericByteViewArray::value_unchecked(self, index)
857 }
858}
859
860impl<'a, T: ByteViewType + ?Sized> IntoIterator for &'a GenericByteViewArray<T> {
861 type Item = Option<&'a T::Native>;
862 type IntoIter = ArrayIter<Self>;
863
864 fn into_iter(self) -> Self::IntoIter {
865 ArrayIter::new(self)
866 }
867}
868
869impl<T: ByteViewType + ?Sized> From<ArrayData> for GenericByteViewArray<T> {
870 fn from(value: ArrayData) -> Self {
871 let views = value.buffers()[0].clone();
872 let views = ScalarBuffer::new(views, value.offset(), value.len());
873 let buffers = value.buffers()[1..].to_vec();
874 Self {
875 data_type: T::DATA_TYPE,
876 views,
877 buffers,
878 nulls: value.nulls().cloned(),
879 phantom: Default::default(),
880 }
881 }
882}
883
884/// Efficiently convert a [`GenericByteArray`] to a [`GenericByteViewArray`]
885///
886/// For example this method can convert a [`StringArray`] to a
887/// [`StringViewArray`].
888///
889/// If the offsets are all less than u32::MAX, the new [`GenericByteViewArray`]
890/// is built without copying the underlying string data (views are created
891/// directly into the existing buffer)
892///
893/// [`StringArray`]: crate::StringArray
894impl<FROM, V> From<&GenericByteArray<FROM>> for GenericByteViewArray<V>
895where
896 FROM: ByteArrayType,
897 FROM::Offset: OffsetSizeTrait + ToPrimitive,
898 V: ByteViewType<Native = FROM::Native>,
899{
900 fn from(byte_array: &GenericByteArray<FROM>) -> Self {
901 let offsets = byte_array.offsets();
902
903 let can_reuse_buffer = match offsets.last() {
904 Some(offset) => offset.as_usize() < u32::MAX as usize,
905 None => true,
906 };
907
908 if can_reuse_buffer {
909 // build views directly pointing to the existing buffer
910 let len = byte_array.len();
911 let mut views_builder = GenericByteViewBuilder::<V>::with_capacity(len);
912 let str_values_buf = byte_array.values().clone();
913 let block = views_builder.append_block(str_values_buf);
914 for (i, w) in offsets.windows(2).enumerate() {
915 let offset = w[0].as_usize();
916 let end = w[1].as_usize();
917 let length = end - offset;
918
919 if byte_array.is_null(i) {
920 views_builder.append_null();
921 } else {
922 // Safety: the input was a valid array so it valid UTF8 (if string). And
923 // all offsets were valid
924 unsafe {
925 views_builder.append_view_unchecked(block, offset as u32, length as u32)
926 }
927 }
928 }
929 assert_eq!(views_builder.len(), len);
930 views_builder.finish()
931 } else {
932 // Otherwise, create a new buffer for large strings
933 // TODO: the original buffer could still be used
934 // by making multiple slices of u32::MAX length
935 GenericByteViewArray::<V>::from_iter(byte_array.iter())
936 }
937 }
938}
939
940impl<T: ByteViewType + ?Sized> From<GenericByteViewArray<T>> for ArrayData {
941 fn from(mut array: GenericByteViewArray<T>) -> Self {
942 let len = array.len();
943 array.buffers.insert(0, array.views.into_inner());
944 let builder = ArrayDataBuilder::new(T::DATA_TYPE)
945 .len(len)
946 .buffers(array.buffers)
947 .nulls(array.nulls);
948
949 unsafe { builder.build_unchecked() }
950 }
951}
952
953impl<'a, Ptr, T> FromIterator<&'a Option<Ptr>> for GenericByteViewArray<T>
954where
955 Ptr: AsRef<T::Native> + 'a,
956 T: ByteViewType + ?Sized,
957{
958 fn from_iter<I: IntoIterator<Item = &'a Option<Ptr>>>(iter: I) -> Self {
959 iter.into_iter()
960 .map(|o| o.as_ref().map(|p| p.as_ref()))
961 .collect()
962 }
963}
964
965impl<Ptr, T: ByteViewType + ?Sized> FromIterator<Option<Ptr>> for GenericByteViewArray<T>
966where
967 Ptr: AsRef<T::Native>,
968{
969 fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
970 let iter = iter.into_iter();
971 let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
972 builder.extend(iter);
973 builder.finish()
974 }
975}
976
977/// A [`GenericByteViewArray`] of `[u8]`
978///
979/// See [`GenericByteViewArray`] for format and layout details.
980///
981/// # Example
982/// ```
983/// use arrow_array::BinaryViewArray;
984/// let array = BinaryViewArray::from_iter_values(vec![b"hello" as &[u8], b"world", b"lulu", b"large payload over 12 bytes"]);
985/// assert_eq!(array.value(0), b"hello");
986/// assert_eq!(array.value(3), b"large payload over 12 bytes");
987/// ```
988pub type BinaryViewArray = GenericByteViewArray<BinaryViewType>;
989
990impl BinaryViewArray {
991 /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
992 /// If items not utf8 data, validate will fail and error returned.
993 pub fn to_string_view(self) -> Result<StringViewArray, ArrowError> {
994 StringViewType::validate(self.views(), self.data_buffers())?;
995 unsafe { Ok(self.to_string_view_unchecked()) }
996 }
997
998 /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
999 /// # Safety
1000 /// Caller is responsible for ensuring that items in array are utf8 data.
1001 pub unsafe fn to_string_view_unchecked(self) -> StringViewArray {
1002 StringViewArray::new_unchecked(self.views, self.buffers, self.nulls)
1003 }
1004}
1005
1006impl From<Vec<&[u8]>> for BinaryViewArray {
1007 fn from(v: Vec<&[u8]>) -> Self {
1008 Self::from_iter_values(v)
1009 }
1010}
1011
1012impl From<Vec<Option<&[u8]>>> for BinaryViewArray {
1013 fn from(v: Vec<Option<&[u8]>>) -> Self {
1014 v.into_iter().collect()
1015 }
1016}
1017
1018/// A [`GenericByteViewArray`] that stores utf8 data
1019///
1020/// See [`GenericByteViewArray`] for format and layout details.
1021///
1022/// # Example
1023/// ```
1024/// use arrow_array::StringViewArray;
1025/// let array = StringViewArray::from_iter_values(vec!["hello", "world", "lulu", "large payload over 12 bytes"]);
1026/// assert_eq!(array.value(0), "hello");
1027/// assert_eq!(array.value(3), "large payload over 12 bytes");
1028/// ```
1029pub type StringViewArray = GenericByteViewArray<StringViewType>;
1030
1031impl StringViewArray {
1032 /// Convert the [`StringViewArray`] to [`BinaryViewArray`]
1033 pub fn to_binary_view(self) -> BinaryViewArray {
1034 unsafe { BinaryViewArray::new_unchecked(self.views, self.buffers, self.nulls) }
1035 }
1036
1037 /// Returns true if all data within this array is ASCII
1038 pub fn is_ascii(&self) -> bool {
1039 // Alternative (but incorrect): directly check the underlying buffers
1040 // (1) Our string view might be sparse, i.e., a subset of the buffers,
1041 // so even if the buffer is not ascii, we can still be ascii.
1042 // (2) It is quite difficult to know the range of each buffer (unlike StringArray)
1043 // This means that this operation is quite expensive, shall we cache the result?
1044 // i.e. track `is_ascii` in the builder.
1045 self.iter().all(|v| match v {
1046 Some(v) => v.is_ascii(),
1047 None => true,
1048 })
1049 }
1050}
1051
1052impl From<Vec<&str>> for StringViewArray {
1053 fn from(v: Vec<&str>) -> Self {
1054 Self::from_iter_values(v)
1055 }
1056}
1057
1058impl From<Vec<Option<&str>>> for StringViewArray {
1059 fn from(v: Vec<Option<&str>>) -> Self {
1060 v.into_iter().collect()
1061 }
1062}
1063
1064impl From<Vec<String>> for StringViewArray {
1065 fn from(v: Vec<String>) -> Self {
1066 Self::from_iter_values(v)
1067 }
1068}
1069
1070impl From<Vec<Option<String>>> for StringViewArray {
1071 fn from(v: Vec<Option<String>>) -> Self {
1072 v.into_iter().collect()
1073 }
1074}
1075
1076#[cfg(test)]
1077mod tests {
1078 use crate::builder::{BinaryViewBuilder, StringViewBuilder};
1079 use crate::types::BinaryViewType;
1080 use crate::{
1081 Array, BinaryViewArray, GenericBinaryArray, GenericByteViewArray, StringViewArray,
1082 };
1083 use arrow_buffer::{Buffer, ScalarBuffer};
1084 use arrow_data::{ByteView, MAX_INLINE_VIEW_LEN};
1085 use rand::prelude::StdRng;
1086 use rand::{Rng, SeedableRng};
1087
1088 const BLOCK_SIZE: u32 = 8;
1089
1090 #[test]
1091 fn try_new_string() {
1092 let array = StringViewArray::from_iter_values(vec![
1093 "hello",
1094 "world",
1095 "lulu",
1096 "large payload over 12 bytes",
1097 ]);
1098 assert_eq!(array.value(0), "hello");
1099 assert_eq!(array.value(3), "large payload over 12 bytes");
1100 }
1101
1102 #[test]
1103 fn try_new_binary() {
1104 let array = BinaryViewArray::from_iter_values(vec![
1105 b"hello".as_slice(),
1106 b"world".as_slice(),
1107 b"lulu".as_slice(),
1108 b"large payload over 12 bytes".as_slice(),
1109 ]);
1110 assert_eq!(array.value(0), b"hello");
1111 assert_eq!(array.value(3), b"large payload over 12 bytes");
1112 }
1113
1114 #[test]
1115 fn try_new_empty_string() {
1116 // test empty array
1117 let array = {
1118 let mut builder = StringViewBuilder::new();
1119 builder.finish()
1120 };
1121 assert!(array.is_empty());
1122 }
1123
1124 #[test]
1125 fn try_new_empty_binary() {
1126 // test empty array
1127 let array = {
1128 let mut builder = BinaryViewBuilder::new();
1129 builder.finish()
1130 };
1131 assert!(array.is_empty());
1132 }
1133
1134 #[test]
1135 fn test_append_string() {
1136 // test builder append
1137 let array = {
1138 let mut builder = StringViewBuilder::new();
1139 builder.append_value("hello");
1140 builder.append_null();
1141 builder.append_option(Some("large payload over 12 bytes"));
1142 builder.finish()
1143 };
1144 assert_eq!(array.value(0), "hello");
1145 assert!(array.is_null(1));
1146 assert_eq!(array.value(2), "large payload over 12 bytes");
1147 }
1148
1149 #[test]
1150 fn test_append_binary() {
1151 // test builder append
1152 let array = {
1153 let mut builder = BinaryViewBuilder::new();
1154 builder.append_value(b"hello");
1155 builder.append_null();
1156 builder.append_option(Some(b"large payload over 12 bytes"));
1157 builder.finish()
1158 };
1159 assert_eq!(array.value(0), b"hello");
1160 assert!(array.is_null(1));
1161 assert_eq!(array.value(2), b"large payload over 12 bytes");
1162 }
1163
1164 #[test]
1165 fn test_in_progress_recreation() {
1166 let array = {
1167 // make a builder with small block size.
1168 let mut builder = StringViewBuilder::new().with_fixed_block_size(14);
1169 builder.append_value("large payload over 12 bytes");
1170 builder.append_option(Some("another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created"));
1171 builder.finish()
1172 };
1173 assert_eq!(array.value(0), "large payload over 12 bytes");
1174 assert_eq!(array.value(1), "another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created");
1175 assert_eq!(2, array.buffers.len());
1176 }
1177
1178 #[test]
1179 #[should_panic(expected = "Invalid buffer index at 0: got index 3 but only has 1 buffers")]
1180 fn new_with_invalid_view_data() {
1181 let v = "large payload over 12 bytes";
1182 let view = ByteView::new(13, &v.as_bytes()[0..4])
1183 .with_buffer_index(3)
1184 .with_offset(1);
1185 let views = ScalarBuffer::from(vec![view.into()]);
1186 let buffers = vec![Buffer::from_slice_ref(v)];
1187 StringViewArray::new(views, buffers, None);
1188 }
1189
1190 #[test]
1191 #[should_panic(
1192 expected = "Encountered non-UTF-8 data at index 0: invalid utf-8 sequence of 1 bytes from index 0"
1193 )]
1194 fn new_with_invalid_utf8_data() {
1195 let v: Vec<u8> = vec![
1196 // invalid UTF8
1197 0xf0, 0x80, 0x80, 0x80, // more bytes to make it larger than 12
1198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1199 ];
1200 let view = ByteView::new(v.len() as u32, &v[0..4]);
1201 let views = ScalarBuffer::from(vec![view.into()]);
1202 let buffers = vec![Buffer::from_slice_ref(v)];
1203 StringViewArray::new(views, buffers, None);
1204 }
1205
1206 #[test]
1207 #[should_panic(expected = "View at index 0 contained non-zero padding for string of length 1")]
1208 fn new_with_invalid_zero_padding() {
1209 let mut data = [0; 12];
1210 data[0] = b'H';
1211 data[11] = 1; // no zero padding
1212
1213 let mut view_buffer = [0; 16];
1214 view_buffer[0..4].copy_from_slice(&1u32.to_le_bytes());
1215 view_buffer[4..].copy_from_slice(&data);
1216
1217 let view = ByteView::from(u128::from_le_bytes(view_buffer));
1218 let views = ScalarBuffer::from(vec![view.into()]);
1219 let buffers = vec![];
1220 StringViewArray::new(views, buffers, None);
1221 }
1222
1223 #[test]
1224 #[should_panic(expected = "Mismatch between embedded prefix and data")]
1225 fn test_mismatch_between_embedded_prefix_and_data() {
1226 let input_str_1 = "Hello, Rustaceans!";
1227 let input_str_2 = "Hallo, Rustaceans!";
1228 let length = input_str_1.len() as u32;
1229 assert!(input_str_1.len() > 12);
1230
1231 let mut view_buffer = [0; 16];
1232 view_buffer[0..4].copy_from_slice(&length.to_le_bytes());
1233 view_buffer[4..8].copy_from_slice(&input_str_1.as_bytes()[0..4]);
1234 view_buffer[8..12].copy_from_slice(&0u32.to_le_bytes());
1235 view_buffer[12..].copy_from_slice(&0u32.to_le_bytes());
1236 let view = ByteView::from(u128::from_le_bytes(view_buffer));
1237 let views = ScalarBuffer::from(vec![view.into()]);
1238 let buffers = vec![Buffer::from_slice_ref(input_str_2.as_bytes())];
1239
1240 StringViewArray::new(views, buffers, None);
1241 }
1242
1243 #[test]
1244 fn test_gc() {
1245 let test_data = [
1246 Some("longer than 12 bytes"),
1247 Some("short"),
1248 Some("t"),
1249 Some("longer than 12 bytes"),
1250 None,
1251 Some("short"),
1252 ];
1253
1254 let array = {
1255 let mut builder = StringViewBuilder::new().with_fixed_block_size(8); // create multiple buffers
1256 test_data.into_iter().for_each(|v| builder.append_option(v));
1257 builder.finish()
1258 };
1259 assert!(array.buffers.len() > 1);
1260
1261 fn check_gc(to_test: &StringViewArray) {
1262 let gc = to_test.gc();
1263 assert_ne!(to_test.data_buffers().len(), gc.data_buffers().len());
1264
1265 to_test.iter().zip(gc.iter()).for_each(|(a, b)| {
1266 assert_eq!(a, b);
1267 });
1268 assert_eq!(to_test.len(), gc.len());
1269 }
1270
1271 check_gc(&array);
1272 check_gc(&array.slice(1, 3));
1273 check_gc(&array.slice(2, 1));
1274 check_gc(&array.slice(2, 2));
1275 check_gc(&array.slice(3, 1));
1276 }
1277
1278 /// 1) Empty array: no elements, expect gc to return empty with no data buffers
1279 #[test]
1280 fn test_gc_empty_array() {
1281 let array = StringViewBuilder::new()
1282 .with_fixed_block_size(BLOCK_SIZE)
1283 .finish();
1284 let gced = array.gc();
1285 // length and null count remain zero
1286 assert_eq!(gced.len(), 0);
1287 assert_eq!(gced.null_count(), 0);
1288 // no underlying data buffers should be allocated
1289 assert!(
1290 gced.data_buffers().is_empty(),
1291 "Expected no data buffers for empty array"
1292 );
1293 }
1294
1295 /// 2) All inline values (<= INLINE_LEN): capacity-only data buffer, same values
1296 #[test]
1297 fn test_gc_all_inline() {
1298 let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1299 // append many short strings, each exactly INLINE_LEN long
1300 for _ in 0..100 {
1301 let s = "A".repeat(MAX_INLINE_VIEW_LEN as usize);
1302 builder.append_option(Some(&s));
1303 }
1304 let array = builder.finish();
1305 let gced = array.gc();
1306 // Since all views fit inline, data buffer is empty
1307 assert_eq!(
1308 gced.data_buffers().len(),
1309 0,
1310 "Should have no data buffers for inline values"
1311 );
1312 assert_eq!(gced.len(), 100);
1313 // verify element-wise equality
1314 array.iter().zip(gced.iter()).for_each(|(orig, got)| {
1315 assert_eq!(orig, got, "Inline value mismatch after gc");
1316 });
1317 }
1318
1319 /// 3) All large values (> INLINE_LEN): each must be copied into the new data buffer
1320 #[test]
1321 fn test_gc_all_large() {
1322 let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1323 let large_str = "X".repeat(MAX_INLINE_VIEW_LEN as usize + 5);
1324 // append multiple large strings
1325 for _ in 0..50 {
1326 builder.append_option(Some(&large_str));
1327 }
1328 let array = builder.finish();
1329 let gced = array.gc();
1330 // New data buffers should be populated (one or more blocks)
1331 assert!(
1332 !gced.data_buffers().is_empty(),
1333 "Expected data buffers for large values"
1334 );
1335 assert_eq!(gced.len(), 50);
1336 // verify that every large string emerges unchanged
1337 array.iter().zip(gced.iter()).for_each(|(orig, got)| {
1338 assert_eq!(orig, got, "Large view mismatch after gc");
1339 });
1340 }
1341
1342 /// 4) All null elements: ensure null bitmap handling path is correct
1343 #[test]
1344 fn test_gc_all_nulls() {
1345 let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1346 for _ in 0..20 {
1347 builder.append_null();
1348 }
1349 let array = builder.finish();
1350 let gced = array.gc();
1351 // length and null count match
1352 assert_eq!(gced.len(), 20);
1353 assert_eq!(gced.null_count(), 20);
1354 // data buffers remain empty for null-only array
1355 assert!(
1356 gced.data_buffers().is_empty(),
1357 "No data should be stored for nulls"
1358 );
1359 }
1360
1361 /// 5) Random mix of inline, large, and null values with slicing tests
1362 #[test]
1363 fn test_gc_random_mixed_and_slices() {
1364 let mut rng = StdRng::seed_from_u64(42);
1365 let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1366 // Keep a Vec of original Option<String> for later comparison
1367 let mut original: Vec<Option<String>> = Vec::new();
1368
1369 for _ in 0..200 {
1370 if rng.random_bool(0.1) {
1371 // 10% nulls
1372 builder.append_null();
1373 original.push(None);
1374 } else {
1375 // random length between 0 and twice the inline limit
1376 let len = rng.random_range(0..(MAX_INLINE_VIEW_LEN * 2));
1377 let s: String = "A".repeat(len as usize);
1378 builder.append_option(Some(&s));
1379 original.push(Some(s));
1380 }
1381 }
1382
1383 let array = builder.finish();
1384 // Test multiple slice ranges to ensure offset logic is correct
1385 for (offset, slice_len) in &[(0, 50), (10, 100), (150, 30)] {
1386 let sliced = array.slice(*offset, *slice_len);
1387 let gced = sliced.gc();
1388 // Build expected slice of Option<&str>
1389 let expected: Vec<Option<&str>> = original[*offset..(*offset + *slice_len)]
1390 .iter()
1391 .map(|opt| opt.as_deref())
1392 .collect();
1393
1394 assert_eq!(gced.len(), *slice_len, "Slice length mismatch");
1395 // Compare element-wise
1396 gced.iter().zip(expected.iter()).for_each(|(got, expect)| {
1397 assert_eq!(got, *expect, "Value mismatch in mixed slice after gc");
1398 });
1399 }
1400 }
1401
1402 #[test]
1403 fn test_eq() {
1404 let test_data = [
1405 Some("longer than 12 bytes"),
1406 None,
1407 Some("short"),
1408 Some("again, this is longer than 12 bytes"),
1409 ];
1410
1411 let array1 = {
1412 let mut builder = StringViewBuilder::new().with_fixed_block_size(8);
1413 test_data.into_iter().for_each(|v| builder.append_option(v));
1414 builder.finish()
1415 };
1416 let array2 = {
1417 // create a new array with the same data but different layout
1418 let mut builder = StringViewBuilder::new().with_fixed_block_size(100);
1419 test_data.into_iter().for_each(|v| builder.append_option(v));
1420 builder.finish()
1421 };
1422 assert_eq!(array1, array1.clone());
1423 assert_eq!(array2, array2.clone());
1424 assert_eq!(array1, array2);
1425 }
1426
1427 /// Integration tests for `inline_key_fast` covering:
1428 ///
1429 /// 1. Monotonic ordering across increasing lengths and lexical variations.
1430 /// 2. Cross-check against `GenericBinaryArray` comparison to ensure semantic equivalence.
1431 ///
1432 /// This also includes a specific test for the “bar” vs. “bar\0” case, demonstrating why
1433 /// the length field is required even when all inline bytes fit in 12 bytes.
1434 ///
1435 /// The test includes strings that verify correct byte order (prevent reversal bugs),
1436 /// and length-based tie-breaking in the composite key.
1437 ///
1438 /// The test confirms that `inline_key_fast` produces keys which sort consistently
1439 /// with the expected lexicographical order of the raw byte arrays.
1440 #[test]
1441 fn test_inline_key_fast_various_lengths_and_lexical() {
1442 /// Helper to create a raw u128 value representing an inline ByteView:
1443 /// - `length`: number of meaningful bytes (must be ≤ 12)
1444 /// - `data`: the actual inline data bytes
1445 ///
1446 /// The first 4 bytes encode length in little-endian,
1447 /// the following 12 bytes contain the inline string data (unpadded).
1448 fn make_raw_inline(length: u32, data: &[u8]) -> u128 {
1449 assert!(length as usize <= 12, "Inline length must be ≤ 12");
1450 assert!(
1451 data.len() == length as usize,
1452 "Data length must match `length`"
1453 );
1454
1455 let mut raw_bytes = [0u8; 16];
1456 raw_bytes[0..4].copy_from_slice(&length.to_le_bytes()); // length stored little-endian
1457 raw_bytes[4..(4 + data.len())].copy_from_slice(data); // inline data
1458 u128::from_le_bytes(raw_bytes)
1459 }
1460
1461 // Test inputs: various lengths and lexical orders,
1462 // plus special cases for byte order and length tie-breaking
1463 let test_inputs: Vec<&[u8]> = vec![
1464 b"a",
1465 b"aa",
1466 b"aaa",
1467 b"aab",
1468 b"abcd",
1469 b"abcde",
1470 b"abcdef",
1471 b"abcdefg",
1472 b"abcdefgh",
1473 b"abcdefghi",
1474 b"abcdefghij",
1475 b"abcdefghijk",
1476 b"abcdefghijkl",
1477 // Tests for byte-order reversal bug:
1478 // Without the fix, "backend one" would compare as "eno dnekcab",
1479 // causing incorrect sort order relative to "backend two".
1480 b"backend one",
1481 b"backend two",
1482 // Tests length-tiebreaker logic:
1483 // "bar" (3 bytes) and "bar\0" (4 bytes) have identical inline data,
1484 // so only the length differentiates their ordering.
1485 b"bar",
1486 b"bar\0",
1487 // Additional lexical and length tie-breaking cases with same prefix, in correct lex order:
1488 b"than12Byt",
1489 b"than12Bytes",
1490 b"than12Bytes\0",
1491 b"than12Bytesx",
1492 b"than12Bytex",
1493 b"than12Bytez",
1494 // Additional lexical tests
1495 b"xyy",
1496 b"xyz",
1497 b"xza",
1498 ];
1499
1500 // Create a GenericBinaryArray for cross-comparison of lex order
1501 let array: GenericBinaryArray<i32> =
1502 GenericBinaryArray::from(test_inputs.iter().map(|s| Some(*s)).collect::<Vec<_>>());
1503
1504 for i in 0..array.len() - 1 {
1505 let v1 = array.value(i);
1506 let v2 = array.value(i + 1);
1507
1508 // Assert the array's natural lexical ordering is correct
1509 assert!(v1 < v2, "Array compare failed: {v1:?} !< {v2:?}");
1510
1511 // Assert the keys produced by inline_key_fast reflect the same ordering
1512 let key1 = GenericByteViewArray::<BinaryViewType>::inline_key_fast(make_raw_inline(
1513 v1.len() as u32,
1514 v1,
1515 ));
1516 let key2 = GenericByteViewArray::<BinaryViewType>::inline_key_fast(make_raw_inline(
1517 v2.len() as u32,
1518 v2,
1519 ));
1520
1521 assert!(
1522 key1 < key2,
1523 "Key compare failed: key({v1:?})=0x{key1:032x} !< key({v2:?})=0x{key2:032x}",
1524 );
1525 }
1526 }
1527}