arrow_array/array/
byte_view_array.rs

1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements.  See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership.  The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License.  You may obtain a copy of the License at
8//
9//   http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied.  See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18use crate::array::print_long_array;
19use crate::builder::{ArrayBuilder, GenericByteViewBuilder};
20use crate::iterator::ArrayIter;
21use crate::types::bytes::ByteArrayNativeType;
22use crate::types::{BinaryViewType, ByteViewType, StringViewType};
23use crate::{Array, ArrayAccessor, ArrayRef, GenericByteArray, OffsetSizeTrait, Scalar};
24use arrow_buffer::{ArrowNativeType, Buffer, NullBuffer, ScalarBuffer};
25use arrow_data::{ArrayData, ArrayDataBuilder, ByteView, MAX_INLINE_VIEW_LEN};
26use arrow_schema::{ArrowError, DataType};
27use core::str;
28use num::ToPrimitive;
29use std::any::Any;
30use std::cmp::Ordering;
31use std::fmt::Debug;
32use std::marker::PhantomData;
33use std::sync::Arc;
34
35use super::ByteArrayType;
36
37/// [Variable-size Binary View Layout]: An array of variable length bytes views.
38///
39/// This array type is used to store variable length byte data (e.g. Strings, Binary)
40/// and has efficient operations such as `take`, `filter`, and comparison.
41///
42/// [Variable-size Binary View Layout]: https://arrow.apache.org/docs/format/Columnar.html#variable-size-binary-view-layout
43///
44/// This is different from [`GenericByteArray`], which also stores variable
45/// length byte data, as it represents strings with an offset and length. `take`
46/// and `filter` like operations are implemented by manipulating the "views"
47/// (`u128`) without modifying the bytes. Each view also stores an inlined
48/// prefix which speed up comparisons.
49///
50/// # See Also
51///
52/// * [`StringViewArray`] for storing utf8 encoded string data
53/// * [`BinaryViewArray`] for storing bytes
54/// * [`ByteView`] to interpret `u128`s layout of the views.
55///
56/// [`ByteView`]: arrow_data::ByteView
57///
58/// # Layout: "views" and buffers
59///
60/// A `GenericByteViewArray` stores variable length byte strings. An array of
61/// `N` elements is stored as `N` fixed length "views" and a variable number
62/// of variable length "buffers".
63///
64/// Each view is a `u128` value whose layout is different depending on the
65/// length of the string stored at that location:
66///
67/// ```text
68///                         ┌──────┬────────────────────────┐
69///                         │length│      string value      │
70///    Strings (len <= 12)  │      │    (padded with 0)     │
71///                         └──────┴────────────────────────┘
72///                          0    31                      127
73///
74///                         ┌───────┬───────┬───────┬───────┐
75///                         │length │prefix │  buf  │offset │
76///    Strings (len > 12)   │       │       │ index │       │
77///                         └───────┴───────┴───────┴───────┘
78///                          0    31       63      95    127
79/// ```
80///
81/// * Strings with length <= 12 ([`MAX_INLINE_VIEW_LEN`]) are stored directly in
82///   the view. See [`Self::inline_value`] to access the inlined prefix from a
83///   short view.
84///
85/// * Strings with length > 12: The first four bytes are stored inline in the
86///   view and the entire string is stored in one of the buffers. See [`ByteView`]
87///   to access the fields of the these views.
88///
89/// As with other arrays, the optimized kernels in [`arrow_compute`] are likely
90/// the easiest and fastest way to work with this data. However, it is possible
91/// to access the views and buffers directly for more control.
92///
93/// For example
94///
95/// ```rust
96/// # use arrow_array::StringViewArray;
97/// # use arrow_array::Array;
98/// use arrow_data::ByteView;
99/// let array = StringViewArray::from(vec![
100///   "hello",
101///   "this string is longer than 12 bytes",
102///   "this string is also longer than 12 bytes"
103/// ]);
104///
105/// // ** Examine the first view (short string) **
106/// assert!(array.is_valid(0)); // Check for nulls
107/// let short_view: u128 = array.views()[0]; // "hello"
108/// // get length of the string
109/// let len = short_view as u32;
110/// assert_eq!(len, 5); // strings less than 12 bytes are stored in the view
111/// // SAFETY: `view` is a valid view
112/// let value = unsafe {
113///   StringViewArray::inline_value(&short_view, len as usize)
114/// };
115/// assert_eq!(value, b"hello");
116///
117/// // ** Examine the third view (long string) **
118/// assert!(array.is_valid(12)); // Check for nulls
119/// let long_view: u128 = array.views()[2]; // "this string is also longer than 12 bytes"
120/// let len = long_view as u32;
121/// assert_eq!(len, 40); // strings longer than 12 bytes are stored in the buffer
122/// let view = ByteView::from(long_view); // use ByteView to access the fields
123/// assert_eq!(view.length, 40);
124/// assert_eq!(view.buffer_index, 0);
125/// assert_eq!(view.offset, 35); // data starts after the first long string
126/// // Views for long strings store a 4 byte prefix
127/// let prefix = view.prefix.to_le_bytes();
128/// assert_eq!(&prefix, b"this");
129/// let value = array.value(2); // get the string value (see `value` implementation for how to access the bytes directly)
130/// assert_eq!(value, "this string is also longer than 12 bytes");
131/// ```
132///
133/// [`MAX_INLINE_VIEW_LEN`]: arrow_data::MAX_INLINE_VIEW_LEN
134/// [`arrow_compute`]: https://docs.rs/arrow/latest/arrow/compute/index.html
135///
136/// Unlike [`GenericByteArray`], there are no constraints on the offsets other
137/// than they must point into a valid buffer. However, they can be out of order,
138/// non continuous and overlapping.
139///
140/// For example, in the following diagram, the strings "FishWasInTownToday" and
141/// "CrumpleFacedFish" are both longer than 12 bytes and thus are stored in a
142/// separate buffer while the string "LavaMonster" is stored inlined in the
143/// view. In this case, the same bytes for "Fish" are used to store both strings.
144///
145/// [`ByteView`]: arrow_data::ByteView
146///
147/// ```text
148///                                                                            ┌───┐
149///                         ┌──────┬──────┬──────┬──────┐               offset │...│
150/// "FishWasInTownTodayYay" │  21  │ Fish │  0   │ 115  │─ ─              103  │Mr.│
151///                         └──────┴──────┴──────┴──────┘   │      ┌ ─ ─ ─ ─ ▶ │Cru│
152///                         ┌──────┬──────┬──────┬──────┐                      │mpl│
153/// "CrumpleFacedFish"      │  16  │ Crum │  0   │ 103  │─ ─│─ ─ ─ ┘           │eFa│
154///                         └──────┴──────┴──────┴──────┘                      │ced│
155///                         ┌──────┬────────────────────┐   └ ─ ─ ─ ─ ─ ─ ─ ─ ▶│Fis│
156/// "LavaMonster"           │  11  │   LavaMonster      │                      │hWa│
157///                         └──────┴────────────────────┘               offset │sIn│
158///                                                                       115  │Tow│
159///                                                                            │nTo│
160///                                                                            │day│
161///                                  u128 "views"                              │Yay│
162///                                                                   buffer 0 │...│
163///                                                                            └───┘
164/// ```
165pub struct GenericByteViewArray<T: ByteViewType + ?Sized> {
166    data_type: DataType,
167    views: ScalarBuffer<u128>,
168    buffers: Vec<Buffer>,
169    phantom: PhantomData<T>,
170    nulls: Option<NullBuffer>,
171}
172
173impl<T: ByteViewType + ?Sized> Clone for GenericByteViewArray<T> {
174    fn clone(&self) -> Self {
175        Self {
176            data_type: T::DATA_TYPE,
177            views: self.views.clone(),
178            buffers: self.buffers.clone(),
179            nulls: self.nulls.clone(),
180            phantom: Default::default(),
181        }
182    }
183}
184
185impl<T: ByteViewType + ?Sized> GenericByteViewArray<T> {
186    /// Create a new [`GenericByteViewArray`] from the provided parts, panicking on failure
187    ///
188    /// # Panics
189    ///
190    /// Panics if [`GenericByteViewArray::try_new`] returns an error
191    pub fn new(views: ScalarBuffer<u128>, buffers: Vec<Buffer>, nulls: Option<NullBuffer>) -> Self {
192        Self::try_new(views, buffers, nulls).unwrap()
193    }
194
195    /// Create a new [`GenericByteViewArray`] from the provided parts, returning an error on failure
196    ///
197    /// # Errors
198    ///
199    /// * `views.len() != nulls.len()`
200    /// * [ByteViewType::validate] fails
201    pub fn try_new(
202        views: ScalarBuffer<u128>,
203        buffers: Vec<Buffer>,
204        nulls: Option<NullBuffer>,
205    ) -> Result<Self, ArrowError> {
206        T::validate(&views, &buffers)?;
207
208        if let Some(n) = nulls.as_ref() {
209            if n.len() != views.len() {
210                return Err(ArrowError::InvalidArgumentError(format!(
211                    "Incorrect length of null buffer for {}ViewArray, expected {} got {}",
212                    T::PREFIX,
213                    views.len(),
214                    n.len(),
215                )));
216            }
217        }
218
219        Ok(Self {
220            data_type: T::DATA_TYPE,
221            views,
222            buffers,
223            nulls,
224            phantom: Default::default(),
225        })
226    }
227
228    /// Create a new [`GenericByteViewArray`] from the provided parts, without validation
229    ///
230    /// # Safety
231    ///
232    /// Safe if [`Self::try_new`] would not error
233    pub unsafe fn new_unchecked(
234        views: ScalarBuffer<u128>,
235        buffers: Vec<Buffer>,
236        nulls: Option<NullBuffer>,
237    ) -> Self {
238        if cfg!(feature = "force_validate") {
239            return Self::new(views, buffers, nulls);
240        }
241
242        Self {
243            data_type: T::DATA_TYPE,
244            phantom: Default::default(),
245            views,
246            buffers,
247            nulls,
248        }
249    }
250
251    /// Create a new [`GenericByteViewArray`] of length `len` where all values are null
252    pub fn new_null(len: usize) -> Self {
253        Self {
254            data_type: T::DATA_TYPE,
255            views: vec![0; len].into(),
256            buffers: vec![],
257            nulls: Some(NullBuffer::new_null(len)),
258            phantom: Default::default(),
259        }
260    }
261
262    /// Create a new [`Scalar`] from `value`
263    pub fn new_scalar(value: impl AsRef<T::Native>) -> Scalar<Self> {
264        Scalar::new(Self::from_iter_values(std::iter::once(value)))
265    }
266
267    /// Creates a [`GenericByteViewArray`] based on an iterator of values without nulls
268    pub fn from_iter_values<Ptr, I>(iter: I) -> Self
269    where
270        Ptr: AsRef<T::Native>,
271        I: IntoIterator<Item = Ptr>,
272    {
273        let iter = iter.into_iter();
274        let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
275        for v in iter {
276            builder.append_value(v);
277        }
278        builder.finish()
279    }
280
281    /// Deconstruct this array into its constituent parts
282    pub fn into_parts(self) -> (ScalarBuffer<u128>, Vec<Buffer>, Option<NullBuffer>) {
283        (self.views, self.buffers, self.nulls)
284    }
285
286    /// Returns the views buffer
287    #[inline]
288    pub fn views(&self) -> &ScalarBuffer<u128> {
289        &self.views
290    }
291
292    /// Returns the buffers storing string data
293    #[inline]
294    pub fn data_buffers(&self) -> &[Buffer] {
295        &self.buffers
296    }
297
298    /// Returns the element at index `i`
299    ///
300    /// Note: This method does not check for nulls and the value is arbitrary
301    /// (but still well-defined) if [`is_null`](Self::is_null) returns true for the index.
302    ///
303    /// # Panics
304    /// Panics if index `i` is out of bounds.
305    pub fn value(&self, i: usize) -> &T::Native {
306        assert!(
307            i < self.len(),
308            "Trying to access an element at index {} from a {}ViewArray of length {}",
309            i,
310            T::PREFIX,
311            self.len()
312        );
313
314        unsafe { self.value_unchecked(i) }
315    }
316
317    /// Returns the element at index `i` without bounds checking
318    ///
319    /// Note: This method does not check for nulls and the value is arbitrary
320    /// if [`is_null`](Self::is_null) returns true for the index.
321    ///
322    /// # Safety
323    ///
324    /// Caller is responsible for ensuring that the index is within the bounds
325    /// of the array
326    pub unsafe fn value_unchecked(&self, idx: usize) -> &T::Native {
327        let v = self.views.get_unchecked(idx);
328        let len = *v as u32;
329        let b = if len <= MAX_INLINE_VIEW_LEN {
330            Self::inline_value(v, len as usize)
331        } else {
332            let view = ByteView::from(*v);
333            let data = self.buffers.get_unchecked(view.buffer_index as usize);
334            let offset = view.offset as usize;
335            data.get_unchecked(offset..offset + len as usize)
336        };
337        T::Native::from_bytes_unchecked(b)
338    }
339
340    /// Returns the first `len` bytes the inline value of the view.
341    ///
342    /// # Safety
343    /// - The `view` must be a valid element from `Self::views()` that adheres to the view layout.
344    /// - The `len` must be the length of the inlined value. It should never be larger than [`MAX_INLINE_VIEW_LEN`].
345    #[inline(always)]
346    pub unsafe fn inline_value(view: &u128, len: usize) -> &[u8] {
347        debug_assert!(len <= MAX_INLINE_VIEW_LEN as usize);
348        std::slice::from_raw_parts((view as *const u128 as *const u8).wrapping_add(4), len)
349    }
350
351    /// Constructs a new iterator for iterating over the values of this array
352    pub fn iter(&self) -> ArrayIter<&Self> {
353        ArrayIter::new(self)
354    }
355
356    /// Returns an iterator over the bytes of this array, including null values
357    pub fn bytes_iter(&self) -> impl Iterator<Item = &[u8]> {
358        self.views.iter().map(move |v| {
359            let len = *v as u32;
360            if len <= MAX_INLINE_VIEW_LEN {
361                unsafe { Self::inline_value(v, len as usize) }
362            } else {
363                let view = ByteView::from(*v);
364                let data = &self.buffers[view.buffer_index as usize];
365                let offset = view.offset as usize;
366                unsafe { data.get_unchecked(offset..offset + len as usize) }
367            }
368        })
369    }
370
371    /// Returns an iterator over the first `prefix_len` bytes of each array
372    /// element, including null values.
373    ///
374    /// If `prefix_len` is larger than the element's length, the iterator will
375    /// return an empty slice (`&[]`).
376    pub fn prefix_bytes_iter(&self, prefix_len: usize) -> impl Iterator<Item = &[u8]> {
377        self.views().into_iter().map(move |v| {
378            let len = (*v as u32) as usize;
379
380            if len < prefix_len {
381                return &[] as &[u8];
382            }
383
384            if prefix_len <= 4 || len as u32 <= MAX_INLINE_VIEW_LEN {
385                unsafe { StringViewArray::inline_value(v, prefix_len) }
386            } else {
387                let view = ByteView::from(*v);
388                let data = unsafe {
389                    self.data_buffers()
390                        .get_unchecked(view.buffer_index as usize)
391                };
392                let offset = view.offset as usize;
393                unsafe { data.get_unchecked(offset..offset + prefix_len) }
394            }
395        })
396    }
397
398    /// Returns an iterator over the last `suffix_len` bytes of each array
399    /// element, including null values.
400    ///
401    /// Note that for [`StringViewArray`] the last bytes may start in the middle
402    /// of a UTF-8 codepoint, and thus may not be a valid `&str`.
403    ///
404    /// If `suffix_len` is larger than the element's length, the iterator will
405    /// return an empty slice (`&[]`).
406    pub fn suffix_bytes_iter(&self, suffix_len: usize) -> impl Iterator<Item = &[u8]> {
407        self.views().into_iter().map(move |v| {
408            let len = (*v as u32) as usize;
409
410            if len < suffix_len {
411                return &[] as &[u8];
412            }
413
414            if len as u32 <= MAX_INLINE_VIEW_LEN {
415                unsafe { &StringViewArray::inline_value(v, len)[len - suffix_len..] }
416            } else {
417                let view = ByteView::from(*v);
418                let data = unsafe {
419                    self.data_buffers()
420                        .get_unchecked(view.buffer_index as usize)
421                };
422                let offset = view.offset as usize;
423                unsafe { data.get_unchecked(offset + len - suffix_len..offset + len) }
424            }
425        })
426    }
427
428    /// Returns a zero-copy slice of this array with the indicated offset and length.
429    pub fn slice(&self, offset: usize, length: usize) -> Self {
430        Self {
431            data_type: T::DATA_TYPE,
432            views: self.views.slice(offset, length),
433            buffers: self.buffers.clone(),
434            nulls: self.nulls.as_ref().map(|n| n.slice(offset, length)),
435            phantom: Default::default(),
436        }
437    }
438
439    /// Returns a "compacted" version of this array
440    ///
441    /// The original array will *not* be modified
442    ///
443    /// # Garbage Collection
444    ///
445    /// Before GC:
446    /// ```text
447    ///                                        ┌──────┐
448    ///                                        │......│
449    ///                                        │......│
450    /// ┌────────────────────┐       ┌ ─ ─ ─ ▶ │Data1 │   Large buffer
451    /// │       View 1       │─ ─ ─ ─          │......│  with data that
452    /// ├────────────────────┤                 │......│ is not referred
453    /// │       View 2       │─ ─ ─ ─ ─ ─ ─ ─▶ │Data2 │ to by View 1 or
454    /// └────────────────────┘                 │......│      View 2
455    ///                                        │......│
456    ///    2 views, refer to                   │......│
457    ///   small portions of a                  └──────┘
458    ///      large buffer
459    /// ```
460    ///
461    /// After GC:
462    ///
463    /// ```text
464    /// ┌────────────────────┐                 ┌─────┐    After gc, only
465    /// │       View 1       │─ ─ ─ ─ ─ ─ ─ ─▶ │Data1│     data that is
466    /// ├────────────────────┤       ┌ ─ ─ ─ ▶ │Data2│    pointed to by
467    /// │       View 2       │─ ─ ─ ─          └─────┘     the views is
468    /// └────────────────────┘                                 left
469    ///
470    ///
471    ///         2 views
472    /// ```
473    /// This method will compact the data buffers by recreating the view array and only include the data
474    /// that is pointed to by the views.
475    ///
476    /// Note that it will copy the array regardless of whether the original array is compact.
477    /// Use with caution as this can be an expensive operation, only use it when you are sure that the view
478    /// array is significantly smaller than when it is originally created, e.g., after filtering or slicing.
479    ///
480    /// Note: this function does not attempt to canonicalize / deduplicate values. For this
481    /// feature see  [`GenericByteViewBuilder::with_deduplicate_strings`].
482    pub fn gc(&self) -> Self {
483        // 1) Read basic properties once
484        let len = self.len(); // number of elements
485        let nulls = self.nulls().cloned(); // reuse & clone existing null bitmap
486
487        // 1.5) Fast path: if there are no buffers, just reuse original views and no data blocks
488        if self.data_buffers().is_empty() {
489            return unsafe {
490                GenericByteViewArray::new_unchecked(
491                    self.views().clone(),
492                    vec![], // empty data blocks
493                    nulls,
494                )
495            };
496        }
497
498        // 2) Calculate total size of all non-inline data and detect if any exists
499        let total_large = self.total_buffer_bytes_used();
500
501        // 2.5) Fast path: if there is no non-inline data, avoid buffer allocation & processing
502        if total_large == 0 {
503            // Views are inline-only or all null; just reuse original views and no data blocks
504            return unsafe {
505                GenericByteViewArray::new_unchecked(
506                    self.views().clone(),
507                    vec![], // empty data blocks
508                    nulls,
509                )
510            };
511        }
512
513        // 3) Allocate exactly capacity for all non-inline data
514        let mut data_buf = Vec::with_capacity(total_large);
515
516        // 4) Iterate over views and process each inline/non-inline view
517        let views_buf: Vec<u128> = (0..len)
518            .map(|i| unsafe { self.copy_view_to_buffer(i, &mut data_buf) })
519            .collect();
520
521        // 5) Wrap up buffers
522        let data_block = Buffer::from_vec(data_buf);
523        let views_scalar = ScalarBuffer::from(views_buf);
524        let data_blocks = vec![data_block];
525
526        // SAFETY: views_scalar, data_blocks, and nulls are correctly aligned and sized
527        unsafe { GenericByteViewArray::new_unchecked(views_scalar, data_blocks, nulls) }
528    }
529
530    /// Copy the i‑th view into `data_buf` if it refers to an out‑of‑line buffer.
531    ///
532    /// # Safety
533    ///
534    /// - `i < self.len()`.
535    /// - Every element in `self.views()` must currently refer to a valid slice
536    ///   inside one of `self.buffers`.
537    /// - `data_buf` must be ready to have additional bytes appended.
538    /// - After this call, the returned view will have its
539    ///   `buffer_index` reset to `0` and its `offset` updated so that it points
540    ///   into the bytes just appended at the end of `data_buf`.
541    #[inline(always)]
542    unsafe fn copy_view_to_buffer(&self, i: usize, data_buf: &mut Vec<u8>) -> u128 {
543        // SAFETY: `i < self.len()` ensures this is in‑bounds.
544        let raw_view = *self.views().get_unchecked(i);
545        let mut bv = ByteView::from(raw_view);
546
547        // Inline‑small views stay as‑is.
548        if bv.length <= MAX_INLINE_VIEW_LEN {
549            raw_view
550        } else {
551            // SAFETY: `bv.buffer_index` and `bv.offset..bv.offset+bv.length`
552            // must both lie within valid ranges for `self.buffers`.
553            let buffer = self.buffers.get_unchecked(bv.buffer_index as usize);
554            let start = bv.offset as usize;
555            let end = start + bv.length as usize;
556            let slice = buffer.get_unchecked(start..end);
557
558            // Copy out‑of‑line data into our single “0” buffer.
559            let new_offset = data_buf.len() as u32;
560            data_buf.extend_from_slice(slice);
561
562            bv.buffer_index = 0;
563            bv.offset = new_offset;
564            bv.into()
565        }
566    }
567
568    /// Returns the total number of bytes used by all non inlined views in all
569    /// buffers.
570    ///
571    /// Note this does not account for views that point at the same underlying
572    /// data in buffers
573    ///
574    /// For example, if the array has three strings views:
575    /// * View with length = 9 (inlined)
576    /// * View with length = 32 (non inlined)
577    /// * View with length = 16 (non inlined)
578    ///
579    /// Then this method would report 48
580    pub fn total_buffer_bytes_used(&self) -> usize {
581        self.views()
582            .iter()
583            .map(|v| {
584                let len = *v as u32;
585                if len > MAX_INLINE_VIEW_LEN {
586                    len as usize
587                } else {
588                    0
589                }
590            })
591            .sum()
592    }
593
594    /// Compare two [`GenericByteViewArray`] at index `left_idx` and `right_idx`
595    ///
596    /// Comparing two ByteView types are non-trivial.
597    /// It takes a bit of patience to understand why we don't just compare two &[u8] directly.
598    ///
599    /// ByteView types give us the following two advantages, and we need to be careful not to lose them:
600    /// (1) For string/byte smaller than [`MAX_INLINE_VIEW_LEN`] bytes, the entire data is inlined in the view.
601    ///     Meaning that reading one array element requires only one memory access
602    ///     (two memory access required for StringArray, one for offset buffer, the other for value buffer).
603    ///
604    /// (2) For string/byte larger than [`MAX_INLINE_VIEW_LEN`] bytes, we can still be faster than (for certain operations) StringArray/ByteArray,
605    ///     thanks to the inlined 4 bytes.
606    ///     Consider equality check:
607    ///     If the first four bytes of the two strings are different, we can return false immediately (with just one memory access).
608    ///
609    /// If we directly compare two &[u8], we materialize the entire string (i.e., make multiple memory accesses), which might be unnecessary.
610    /// - Most of the time (eq, ord), we only need to look at the first 4 bytes to know the answer,
611    ///   e.g., if the inlined 4 bytes are different, we can directly return unequal without looking at the full string.
612    ///
613    /// # Order check flow
614    /// (1) if both string are smaller than [`MAX_INLINE_VIEW_LEN`] bytes, we can directly compare the data inlined to the view.
615    /// (2) if any of the string is larger than [`MAX_INLINE_VIEW_LEN`] bytes, we need to compare the full string.
616    ///     (2.1) if the inlined 4 bytes are different, we can return the result immediately.
617    ///     (2.2) o.w., we need to compare the full string.
618    ///
619    /// # Safety
620    /// The left/right_idx must within range of each array
621    pub unsafe fn compare_unchecked(
622        left: &GenericByteViewArray<T>,
623        left_idx: usize,
624        right: &GenericByteViewArray<T>,
625        right_idx: usize,
626    ) -> Ordering {
627        let l_view = left.views().get_unchecked(left_idx);
628        let l_byte_view = ByteView::from(*l_view);
629
630        let r_view = right.views().get_unchecked(right_idx);
631        let r_byte_view = ByteView::from(*r_view);
632
633        let l_len = l_byte_view.length;
634        let r_len = r_byte_view.length;
635
636        if l_len <= 12 && r_len <= 12 {
637            return Self::inline_key_fast(*l_view).cmp(&Self::inline_key_fast(*r_view));
638        }
639
640        // one of the string is larger than 12 bytes,
641        // we then try to compare the inlined data first
642
643        // Note: In theory, ByteView is only used for string which is larger than 12 bytes,
644        // but we can still use it to get the inlined prefix for shorter strings.
645        // The prefix is always the first 4 bytes of the view, for both short and long strings.
646        let l_inlined_be = l_byte_view.prefix.swap_bytes();
647        let r_inlined_be = r_byte_view.prefix.swap_bytes();
648        if l_inlined_be != r_inlined_be {
649            return l_inlined_be.cmp(&r_inlined_be);
650        }
651
652        // unfortunately, we need to compare the full data
653        let l_full_data: &[u8] = unsafe { left.value_unchecked(left_idx).as_ref() };
654        let r_full_data: &[u8] = unsafe { right.value_unchecked(right_idx).as_ref() };
655
656        l_full_data.cmp(r_full_data)
657    }
658
659    /// Builds a 128-bit composite key for an inline value:
660    ///
661    /// - High 96 bits: the inline data in big-endian byte order (for correct lexicographical sorting).
662    /// - Low  32 bits: the length in big-endian byte order, acting as a tiebreaker so shorter strings
663    ///   (or those with fewer meaningful bytes) always numerically sort before longer ones.
664    ///
665    /// This function extracts the length and the 12-byte inline string data from the raw
666    /// little-endian `u128` representation, converts them to big-endian ordering, and packs them
667    /// into a single `u128` value suitable for fast, branchless comparisons.
668    ///
669    /// # Why include length?
670    ///
671    /// A pure 96-bit content comparison can’t distinguish between two values whose inline bytes
672    /// compare equal—either because one is a true prefix of the other or because zero-padding
673    /// hides extra bytes. By tucking the 32-bit length into the lower bits, a single `u128` compare
674    /// handles both content and length in one go.
675    ///
676    /// Example: comparing "bar" (3 bytes) vs "bar\0" (4 bytes)
677    ///
678    /// | String     | Bytes 0–4 (length LE) | Bytes 4–16 (data + padding)    |
679    /// |------------|-----------------------|---------------------------------|
680    /// | `"bar"`   | `03 00 00 00`         | `62 61 72` + 9 × `00`           |
681    /// | `"bar\0"`| `04 00 00 00`         | `62 61 72 00` + 8 × `00`        |
682    ///
683    /// Both inline parts become `62 61 72 00…00`, so they tie on content. The length field
684    /// then differentiates:
685    ///
686    /// ```text
687    /// key("bar")   = 0x0000000000000000000062617200000003
688    /// key("bar\0") = 0x0000000000000000000062617200000004
689    /// ⇒ key("bar") < key("bar\0")
690    /// ```
691    /// # Inlining and Endianness
692    ///
693    /// - We start by calling `.to_le_bytes()` on the `raw` `u128`, because Rust’s native in‑memory
694    ///   representation is little‑endian on x86/ARM.
695    /// - We extract the low 32 bits numerically (`raw as u32`)—this step is endianness‑free.
696    /// - We copy the 12 bytes of inline data (original order) into `buf[0..12]`.
697    /// - We serialize `length` as big‑endian into `buf[12..16]`.
698    /// - Finally, `u128::from_be_bytes(buf)` treats `buf[0]` as the most significant byte
699    ///   and `buf[15]` as the least significant, producing a `u128` whose integer value
700    ///   directly encodes “inline data then length” in big‑endian form.
701    ///
702    /// This ensures that a simple `u128` comparison is equivalent to the desired
703    /// lexicographical comparison of the inline bytes followed by length.
704    #[inline(always)]
705    pub fn inline_key_fast(raw: u128) -> u128 {
706        // 1. Decompose `raw` into little‑endian bytes:
707        //    - raw_bytes[0..4]  = length in LE
708        //    - raw_bytes[4..16] = inline string data
709        let raw_bytes = raw.to_le_bytes();
710
711        // 2. Numerically truncate to get the low 32‑bit length (endianness‑free).
712        let length = raw as u32;
713
714        // 3. Build a 16‑byte buffer in big‑endian order:
715        //    - buf[0..12]  = inline string bytes (in original order)
716        //    - buf[12..16] = length.to_be_bytes() (BE)
717        let mut buf = [0u8; 16];
718        buf[0..12].copy_from_slice(&raw_bytes[4..16]); // inline data
719
720        // Why convert length to big-endian for comparison?
721        //
722        // Rust (on most platforms) stores integers in little-endian format,
723        // meaning the least significant byte is at the lowest memory address.
724        // For example, an u32 value like 0x22345677 is stored in memory as:
725        //
726        //   [0x77, 0x56, 0x34, 0x22]  // little-endian layout
727        //    ^     ^     ^     ^
728        //  LSB   ↑↑↑           MSB
729        //
730        // This layout is efficient for arithmetic but *not* suitable for
731        // lexicographic (dictionary-style) comparison of byte arrays.
732        //
733        // To compare values by byte order—e.g., for sorted keys or binary trees—
734        // we must convert them to **big-endian**, where:
735        //
736        //   - The most significant byte (MSB) comes first (index 0)
737        //   - The least significant byte (LSB) comes last (index N-1)
738        //
739        // In big-endian, the same u32 = 0x22345677 would be represented as:
740        //
741        //   [0x22, 0x34, 0x56, 0x77]
742        //
743        // This ordering aligns with natural string/byte sorting, so calling
744        // `.to_be_bytes()` allows us to construct
745        // keys where standard numeric comparison (e.g., `<`, `>`) behaves
746        // like lexicographic byte comparison.
747        buf[12..16].copy_from_slice(&length.to_be_bytes()); // length in BE
748
749        // 4. Deserialize the buffer as a big‑endian u128:
750        //    buf[0] is MSB, buf[15] is LSB.
751        // Details:
752        // Note on endianness and layout:
753        //
754        // Although `buf[0]` is stored at the lowest memory address,
755        // calling `u128::from_be_bytes(buf)` interprets it as the **most significant byte (MSB)**,
756        // and `buf[15]` as the **least significant byte (LSB)**.
757        //
758        // This is the core principle of **big-endian decoding**:
759        //   - Byte at index 0 maps to bits 127..120 (highest)
760        //   - Byte at index 1 maps to bits 119..112
761        //   - ...
762        //   - Byte at index 15 maps to bits 7..0 (lowest)
763        //
764        // So even though memory layout goes from low to high (left to right),
765        // big-endian treats the **first byte** as highest in value.
766        //
767        // This guarantees that comparing two `u128` keys is equivalent to lexicographically
768        // comparing the original inline bytes, followed by length.
769        u128::from_be_bytes(buf)
770    }
771}
772
773impl<T: ByteViewType + ?Sized> Debug for GenericByteViewArray<T> {
774    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
775        write!(f, "{}ViewArray\n[\n", T::PREFIX)?;
776        print_long_array(self, f, |array, index, f| {
777            std::fmt::Debug::fmt(&array.value(index), f)
778        })?;
779        write!(f, "]")
780    }
781}
782
783impl<T: ByteViewType + ?Sized> Array for GenericByteViewArray<T> {
784    fn as_any(&self) -> &dyn Any {
785        self
786    }
787
788    fn to_data(&self) -> ArrayData {
789        self.clone().into()
790    }
791
792    fn into_data(self) -> ArrayData {
793        self.into()
794    }
795
796    fn data_type(&self) -> &DataType {
797        &self.data_type
798    }
799
800    fn slice(&self, offset: usize, length: usize) -> ArrayRef {
801        Arc::new(self.slice(offset, length))
802    }
803
804    fn len(&self) -> usize {
805        self.views.len()
806    }
807
808    fn is_empty(&self) -> bool {
809        self.views.is_empty()
810    }
811
812    fn shrink_to_fit(&mut self) {
813        self.views.shrink_to_fit();
814        self.buffers.iter_mut().for_each(|b| b.shrink_to_fit());
815        self.buffers.shrink_to_fit();
816        if let Some(nulls) = &mut self.nulls {
817            nulls.shrink_to_fit();
818        }
819    }
820
821    fn offset(&self) -> usize {
822        0
823    }
824
825    fn nulls(&self) -> Option<&NullBuffer> {
826        self.nulls.as_ref()
827    }
828
829    fn logical_null_count(&self) -> usize {
830        // More efficient that the default implementation
831        self.null_count()
832    }
833
834    fn get_buffer_memory_size(&self) -> usize {
835        let mut sum = self.buffers.iter().map(|b| b.capacity()).sum::<usize>();
836        sum += self.views.inner().capacity();
837        if let Some(x) = &self.nulls {
838            sum += x.buffer().capacity()
839        }
840        sum
841    }
842
843    fn get_array_memory_size(&self) -> usize {
844        std::mem::size_of::<Self>() + self.get_buffer_memory_size()
845    }
846}
847
848impl<'a, T: ByteViewType + ?Sized> ArrayAccessor for &'a GenericByteViewArray<T> {
849    type Item = &'a T::Native;
850
851    fn value(&self, index: usize) -> Self::Item {
852        GenericByteViewArray::value(self, index)
853    }
854
855    unsafe fn value_unchecked(&self, index: usize) -> Self::Item {
856        GenericByteViewArray::value_unchecked(self, index)
857    }
858}
859
860impl<'a, T: ByteViewType + ?Sized> IntoIterator for &'a GenericByteViewArray<T> {
861    type Item = Option<&'a T::Native>;
862    type IntoIter = ArrayIter<Self>;
863
864    fn into_iter(self) -> Self::IntoIter {
865        ArrayIter::new(self)
866    }
867}
868
869impl<T: ByteViewType + ?Sized> From<ArrayData> for GenericByteViewArray<T> {
870    fn from(value: ArrayData) -> Self {
871        let views = value.buffers()[0].clone();
872        let views = ScalarBuffer::new(views, value.offset(), value.len());
873        let buffers = value.buffers()[1..].to_vec();
874        Self {
875            data_type: T::DATA_TYPE,
876            views,
877            buffers,
878            nulls: value.nulls().cloned(),
879            phantom: Default::default(),
880        }
881    }
882}
883
884/// Efficiently convert a [`GenericByteArray`] to a [`GenericByteViewArray`]
885///
886/// For example this method can convert a [`StringArray`] to a
887/// [`StringViewArray`].
888///
889/// If the offsets are all less than u32::MAX, the new [`GenericByteViewArray`]
890/// is built without copying the underlying string data (views are created
891/// directly into the existing buffer)
892///
893/// [`StringArray`]: crate::StringArray
894impl<FROM, V> From<&GenericByteArray<FROM>> for GenericByteViewArray<V>
895where
896    FROM: ByteArrayType,
897    FROM::Offset: OffsetSizeTrait + ToPrimitive,
898    V: ByteViewType<Native = FROM::Native>,
899{
900    fn from(byte_array: &GenericByteArray<FROM>) -> Self {
901        let offsets = byte_array.offsets();
902
903        let can_reuse_buffer = match offsets.last() {
904            Some(offset) => offset.as_usize() < u32::MAX as usize,
905            None => true,
906        };
907
908        if can_reuse_buffer {
909            // build views directly pointing to the existing buffer
910            let len = byte_array.len();
911            let mut views_builder = GenericByteViewBuilder::<V>::with_capacity(len);
912            let str_values_buf = byte_array.values().clone();
913            let block = views_builder.append_block(str_values_buf);
914            for (i, w) in offsets.windows(2).enumerate() {
915                let offset = w[0].as_usize();
916                let end = w[1].as_usize();
917                let length = end - offset;
918
919                if byte_array.is_null(i) {
920                    views_builder.append_null();
921                } else {
922                    // Safety: the input was a valid array so it valid UTF8 (if string). And
923                    // all offsets were valid
924                    unsafe {
925                        views_builder.append_view_unchecked(block, offset as u32, length as u32)
926                    }
927                }
928            }
929            assert_eq!(views_builder.len(), len);
930            views_builder.finish()
931        } else {
932            // Otherwise, create a new buffer for large strings
933            // TODO: the original buffer could still be used
934            // by making multiple slices of u32::MAX length
935            GenericByteViewArray::<V>::from_iter(byte_array.iter())
936        }
937    }
938}
939
940impl<T: ByteViewType + ?Sized> From<GenericByteViewArray<T>> for ArrayData {
941    fn from(mut array: GenericByteViewArray<T>) -> Self {
942        let len = array.len();
943        array.buffers.insert(0, array.views.into_inner());
944        let builder = ArrayDataBuilder::new(T::DATA_TYPE)
945            .len(len)
946            .buffers(array.buffers)
947            .nulls(array.nulls);
948
949        unsafe { builder.build_unchecked() }
950    }
951}
952
953impl<'a, Ptr, T> FromIterator<&'a Option<Ptr>> for GenericByteViewArray<T>
954where
955    Ptr: AsRef<T::Native> + 'a,
956    T: ByteViewType + ?Sized,
957{
958    fn from_iter<I: IntoIterator<Item = &'a Option<Ptr>>>(iter: I) -> Self {
959        iter.into_iter()
960            .map(|o| o.as_ref().map(|p| p.as_ref()))
961            .collect()
962    }
963}
964
965impl<Ptr, T: ByteViewType + ?Sized> FromIterator<Option<Ptr>> for GenericByteViewArray<T>
966where
967    Ptr: AsRef<T::Native>,
968{
969    fn from_iter<I: IntoIterator<Item = Option<Ptr>>>(iter: I) -> Self {
970        let iter = iter.into_iter();
971        let mut builder = GenericByteViewBuilder::<T>::with_capacity(iter.size_hint().0);
972        builder.extend(iter);
973        builder.finish()
974    }
975}
976
977/// A [`GenericByteViewArray`] of `[u8]`
978///
979/// See [`GenericByteViewArray`] for format and layout details.
980///
981/// # Example
982/// ```
983/// use arrow_array::BinaryViewArray;
984/// let array = BinaryViewArray::from_iter_values(vec![b"hello" as &[u8], b"world", b"lulu", b"large payload over 12 bytes"]);
985/// assert_eq!(array.value(0), b"hello");
986/// assert_eq!(array.value(3), b"large payload over 12 bytes");
987/// ```
988pub type BinaryViewArray = GenericByteViewArray<BinaryViewType>;
989
990impl BinaryViewArray {
991    /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
992    /// If items not utf8 data, validate will fail and error returned.
993    pub fn to_string_view(self) -> Result<StringViewArray, ArrowError> {
994        StringViewType::validate(self.views(), self.data_buffers())?;
995        unsafe { Ok(self.to_string_view_unchecked()) }
996    }
997
998    /// Convert the [`BinaryViewArray`] to [`StringViewArray`]
999    /// # Safety
1000    /// Caller is responsible for ensuring that items in array are utf8 data.
1001    pub unsafe fn to_string_view_unchecked(self) -> StringViewArray {
1002        StringViewArray::new_unchecked(self.views, self.buffers, self.nulls)
1003    }
1004}
1005
1006impl From<Vec<&[u8]>> for BinaryViewArray {
1007    fn from(v: Vec<&[u8]>) -> Self {
1008        Self::from_iter_values(v)
1009    }
1010}
1011
1012impl From<Vec<Option<&[u8]>>> for BinaryViewArray {
1013    fn from(v: Vec<Option<&[u8]>>) -> Self {
1014        v.into_iter().collect()
1015    }
1016}
1017
1018/// A [`GenericByteViewArray`] that stores utf8 data
1019///
1020/// See [`GenericByteViewArray`] for format and layout details.
1021///
1022/// # Example
1023/// ```
1024/// use arrow_array::StringViewArray;
1025/// let array = StringViewArray::from_iter_values(vec!["hello", "world", "lulu", "large payload over 12 bytes"]);
1026/// assert_eq!(array.value(0), "hello");
1027/// assert_eq!(array.value(3), "large payload over 12 bytes");
1028/// ```
1029pub type StringViewArray = GenericByteViewArray<StringViewType>;
1030
1031impl StringViewArray {
1032    /// Convert the [`StringViewArray`] to [`BinaryViewArray`]
1033    pub fn to_binary_view(self) -> BinaryViewArray {
1034        unsafe { BinaryViewArray::new_unchecked(self.views, self.buffers, self.nulls) }
1035    }
1036
1037    /// Returns true if all data within this array is ASCII
1038    pub fn is_ascii(&self) -> bool {
1039        // Alternative (but incorrect): directly check the underlying buffers
1040        // (1) Our string view might be sparse, i.e., a subset of the buffers,
1041        //      so even if the buffer is not ascii, we can still be ascii.
1042        // (2) It is quite difficult to know the range of each buffer (unlike StringArray)
1043        // This means that this operation is quite expensive, shall we cache the result?
1044        //  i.e. track `is_ascii` in the builder.
1045        self.iter().all(|v| match v {
1046            Some(v) => v.is_ascii(),
1047            None => true,
1048        })
1049    }
1050}
1051
1052impl From<Vec<&str>> for StringViewArray {
1053    fn from(v: Vec<&str>) -> Self {
1054        Self::from_iter_values(v)
1055    }
1056}
1057
1058impl From<Vec<Option<&str>>> for StringViewArray {
1059    fn from(v: Vec<Option<&str>>) -> Self {
1060        v.into_iter().collect()
1061    }
1062}
1063
1064impl From<Vec<String>> for StringViewArray {
1065    fn from(v: Vec<String>) -> Self {
1066        Self::from_iter_values(v)
1067    }
1068}
1069
1070impl From<Vec<Option<String>>> for StringViewArray {
1071    fn from(v: Vec<Option<String>>) -> Self {
1072        v.into_iter().collect()
1073    }
1074}
1075
1076#[cfg(test)]
1077mod tests {
1078    use crate::builder::{BinaryViewBuilder, StringViewBuilder};
1079    use crate::types::BinaryViewType;
1080    use crate::{
1081        Array, BinaryViewArray, GenericBinaryArray, GenericByteViewArray, StringViewArray,
1082    };
1083    use arrow_buffer::{Buffer, ScalarBuffer};
1084    use arrow_data::{ByteView, MAX_INLINE_VIEW_LEN};
1085    use rand::prelude::StdRng;
1086    use rand::{Rng, SeedableRng};
1087
1088    const BLOCK_SIZE: u32 = 8;
1089
1090    #[test]
1091    fn try_new_string() {
1092        let array = StringViewArray::from_iter_values(vec![
1093            "hello",
1094            "world",
1095            "lulu",
1096            "large payload over 12 bytes",
1097        ]);
1098        assert_eq!(array.value(0), "hello");
1099        assert_eq!(array.value(3), "large payload over 12 bytes");
1100    }
1101
1102    #[test]
1103    fn try_new_binary() {
1104        let array = BinaryViewArray::from_iter_values(vec![
1105            b"hello".as_slice(),
1106            b"world".as_slice(),
1107            b"lulu".as_slice(),
1108            b"large payload over 12 bytes".as_slice(),
1109        ]);
1110        assert_eq!(array.value(0), b"hello");
1111        assert_eq!(array.value(3), b"large payload over 12 bytes");
1112    }
1113
1114    #[test]
1115    fn try_new_empty_string() {
1116        // test empty array
1117        let array = {
1118            let mut builder = StringViewBuilder::new();
1119            builder.finish()
1120        };
1121        assert!(array.is_empty());
1122    }
1123
1124    #[test]
1125    fn try_new_empty_binary() {
1126        // test empty array
1127        let array = {
1128            let mut builder = BinaryViewBuilder::new();
1129            builder.finish()
1130        };
1131        assert!(array.is_empty());
1132    }
1133
1134    #[test]
1135    fn test_append_string() {
1136        // test builder append
1137        let array = {
1138            let mut builder = StringViewBuilder::new();
1139            builder.append_value("hello");
1140            builder.append_null();
1141            builder.append_option(Some("large payload over 12 bytes"));
1142            builder.finish()
1143        };
1144        assert_eq!(array.value(0), "hello");
1145        assert!(array.is_null(1));
1146        assert_eq!(array.value(2), "large payload over 12 bytes");
1147    }
1148
1149    #[test]
1150    fn test_append_binary() {
1151        // test builder append
1152        let array = {
1153            let mut builder = BinaryViewBuilder::new();
1154            builder.append_value(b"hello");
1155            builder.append_null();
1156            builder.append_option(Some(b"large payload over 12 bytes"));
1157            builder.finish()
1158        };
1159        assert_eq!(array.value(0), b"hello");
1160        assert!(array.is_null(1));
1161        assert_eq!(array.value(2), b"large payload over 12 bytes");
1162    }
1163
1164    #[test]
1165    fn test_in_progress_recreation() {
1166        let array = {
1167            // make a builder with small block size.
1168            let mut builder = StringViewBuilder::new().with_fixed_block_size(14);
1169            builder.append_value("large payload over 12 bytes");
1170            builder.append_option(Some("another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created"));
1171            builder.finish()
1172        };
1173        assert_eq!(array.value(0), "large payload over 12 bytes");
1174        assert_eq!(array.value(1), "another large payload over 12 bytes that double than the first one, so that we can trigger the in_progress in builder re-created");
1175        assert_eq!(2, array.buffers.len());
1176    }
1177
1178    #[test]
1179    #[should_panic(expected = "Invalid buffer index at 0: got index 3 but only has 1 buffers")]
1180    fn new_with_invalid_view_data() {
1181        let v = "large payload over 12 bytes";
1182        let view = ByteView::new(13, &v.as_bytes()[0..4])
1183            .with_buffer_index(3)
1184            .with_offset(1);
1185        let views = ScalarBuffer::from(vec![view.into()]);
1186        let buffers = vec![Buffer::from_slice_ref(v)];
1187        StringViewArray::new(views, buffers, None);
1188    }
1189
1190    #[test]
1191    #[should_panic(
1192        expected = "Encountered non-UTF-8 data at index 0: invalid utf-8 sequence of 1 bytes from index 0"
1193    )]
1194    fn new_with_invalid_utf8_data() {
1195        let v: Vec<u8> = vec![
1196            // invalid UTF8
1197            0xf0, 0x80, 0x80, 0x80, // more bytes to make it larger than 12
1198            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1199        ];
1200        let view = ByteView::new(v.len() as u32, &v[0..4]);
1201        let views = ScalarBuffer::from(vec![view.into()]);
1202        let buffers = vec![Buffer::from_slice_ref(v)];
1203        StringViewArray::new(views, buffers, None);
1204    }
1205
1206    #[test]
1207    #[should_panic(expected = "View at index 0 contained non-zero padding for string of length 1")]
1208    fn new_with_invalid_zero_padding() {
1209        let mut data = [0; 12];
1210        data[0] = b'H';
1211        data[11] = 1; // no zero padding
1212
1213        let mut view_buffer = [0; 16];
1214        view_buffer[0..4].copy_from_slice(&1u32.to_le_bytes());
1215        view_buffer[4..].copy_from_slice(&data);
1216
1217        let view = ByteView::from(u128::from_le_bytes(view_buffer));
1218        let views = ScalarBuffer::from(vec![view.into()]);
1219        let buffers = vec![];
1220        StringViewArray::new(views, buffers, None);
1221    }
1222
1223    #[test]
1224    #[should_panic(expected = "Mismatch between embedded prefix and data")]
1225    fn test_mismatch_between_embedded_prefix_and_data() {
1226        let input_str_1 = "Hello, Rustaceans!";
1227        let input_str_2 = "Hallo, Rustaceans!";
1228        let length = input_str_1.len() as u32;
1229        assert!(input_str_1.len() > 12);
1230
1231        let mut view_buffer = [0; 16];
1232        view_buffer[0..4].copy_from_slice(&length.to_le_bytes());
1233        view_buffer[4..8].copy_from_slice(&input_str_1.as_bytes()[0..4]);
1234        view_buffer[8..12].copy_from_slice(&0u32.to_le_bytes());
1235        view_buffer[12..].copy_from_slice(&0u32.to_le_bytes());
1236        let view = ByteView::from(u128::from_le_bytes(view_buffer));
1237        let views = ScalarBuffer::from(vec![view.into()]);
1238        let buffers = vec![Buffer::from_slice_ref(input_str_2.as_bytes())];
1239
1240        StringViewArray::new(views, buffers, None);
1241    }
1242
1243    #[test]
1244    fn test_gc() {
1245        let test_data = [
1246            Some("longer than 12 bytes"),
1247            Some("short"),
1248            Some("t"),
1249            Some("longer than 12 bytes"),
1250            None,
1251            Some("short"),
1252        ];
1253
1254        let array = {
1255            let mut builder = StringViewBuilder::new().with_fixed_block_size(8); // create multiple buffers
1256            test_data.into_iter().for_each(|v| builder.append_option(v));
1257            builder.finish()
1258        };
1259        assert!(array.buffers.len() > 1);
1260
1261        fn check_gc(to_test: &StringViewArray) {
1262            let gc = to_test.gc();
1263            assert_ne!(to_test.data_buffers().len(), gc.data_buffers().len());
1264
1265            to_test.iter().zip(gc.iter()).for_each(|(a, b)| {
1266                assert_eq!(a, b);
1267            });
1268            assert_eq!(to_test.len(), gc.len());
1269        }
1270
1271        check_gc(&array);
1272        check_gc(&array.slice(1, 3));
1273        check_gc(&array.slice(2, 1));
1274        check_gc(&array.slice(2, 2));
1275        check_gc(&array.slice(3, 1));
1276    }
1277
1278    /// 1) Empty array: no elements, expect gc to return empty with no data buffers
1279    #[test]
1280    fn test_gc_empty_array() {
1281        let array = StringViewBuilder::new()
1282            .with_fixed_block_size(BLOCK_SIZE)
1283            .finish();
1284        let gced = array.gc();
1285        // length and null count remain zero
1286        assert_eq!(gced.len(), 0);
1287        assert_eq!(gced.null_count(), 0);
1288        // no underlying data buffers should be allocated
1289        assert!(
1290            gced.data_buffers().is_empty(),
1291            "Expected no data buffers for empty array"
1292        );
1293    }
1294
1295    /// 2) All inline values (<= INLINE_LEN): capacity-only data buffer, same values
1296    #[test]
1297    fn test_gc_all_inline() {
1298        let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1299        // append many short strings, each exactly INLINE_LEN long
1300        for _ in 0..100 {
1301            let s = "A".repeat(MAX_INLINE_VIEW_LEN as usize);
1302            builder.append_option(Some(&s));
1303        }
1304        let array = builder.finish();
1305        let gced = array.gc();
1306        // Since all views fit inline, data buffer is empty
1307        assert_eq!(
1308            gced.data_buffers().len(),
1309            0,
1310            "Should have no data buffers for inline values"
1311        );
1312        assert_eq!(gced.len(), 100);
1313        // verify element-wise equality
1314        array.iter().zip(gced.iter()).for_each(|(orig, got)| {
1315            assert_eq!(orig, got, "Inline value mismatch after gc");
1316        });
1317    }
1318
1319    /// 3) All large values (> INLINE_LEN): each must be copied into the new data buffer
1320    #[test]
1321    fn test_gc_all_large() {
1322        let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1323        let large_str = "X".repeat(MAX_INLINE_VIEW_LEN as usize + 5);
1324        // append multiple large strings
1325        for _ in 0..50 {
1326            builder.append_option(Some(&large_str));
1327        }
1328        let array = builder.finish();
1329        let gced = array.gc();
1330        // New data buffers should be populated (one or more blocks)
1331        assert!(
1332            !gced.data_buffers().is_empty(),
1333            "Expected data buffers for large values"
1334        );
1335        assert_eq!(gced.len(), 50);
1336        // verify that every large string emerges unchanged
1337        array.iter().zip(gced.iter()).for_each(|(orig, got)| {
1338            assert_eq!(orig, got, "Large view mismatch after gc");
1339        });
1340    }
1341
1342    /// 4) All null elements: ensure null bitmap handling path is correct
1343    #[test]
1344    fn test_gc_all_nulls() {
1345        let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1346        for _ in 0..20 {
1347            builder.append_null();
1348        }
1349        let array = builder.finish();
1350        let gced = array.gc();
1351        // length and null count match
1352        assert_eq!(gced.len(), 20);
1353        assert_eq!(gced.null_count(), 20);
1354        // data buffers remain empty for null-only array
1355        assert!(
1356            gced.data_buffers().is_empty(),
1357            "No data should be stored for nulls"
1358        );
1359    }
1360
1361    /// 5) Random mix of inline, large, and null values with slicing tests
1362    #[test]
1363    fn test_gc_random_mixed_and_slices() {
1364        let mut rng = StdRng::seed_from_u64(42);
1365        let mut builder = StringViewBuilder::new().with_fixed_block_size(BLOCK_SIZE);
1366        // Keep a Vec of original Option<String> for later comparison
1367        let mut original: Vec<Option<String>> = Vec::new();
1368
1369        for _ in 0..200 {
1370            if rng.random_bool(0.1) {
1371                // 10% nulls
1372                builder.append_null();
1373                original.push(None);
1374            } else {
1375                // random length between 0 and twice the inline limit
1376                let len = rng.random_range(0..(MAX_INLINE_VIEW_LEN * 2));
1377                let s: String = "A".repeat(len as usize);
1378                builder.append_option(Some(&s));
1379                original.push(Some(s));
1380            }
1381        }
1382
1383        let array = builder.finish();
1384        // Test multiple slice ranges to ensure offset logic is correct
1385        for (offset, slice_len) in &[(0, 50), (10, 100), (150, 30)] {
1386            let sliced = array.slice(*offset, *slice_len);
1387            let gced = sliced.gc();
1388            // Build expected slice of Option<&str>
1389            let expected: Vec<Option<&str>> = original[*offset..(*offset + *slice_len)]
1390                .iter()
1391                .map(|opt| opt.as_deref())
1392                .collect();
1393
1394            assert_eq!(gced.len(), *slice_len, "Slice length mismatch");
1395            // Compare element-wise
1396            gced.iter().zip(expected.iter()).for_each(|(got, expect)| {
1397                assert_eq!(got, *expect, "Value mismatch in mixed slice after gc");
1398            });
1399        }
1400    }
1401
1402    #[test]
1403    fn test_eq() {
1404        let test_data = [
1405            Some("longer than 12 bytes"),
1406            None,
1407            Some("short"),
1408            Some("again, this is longer than 12 bytes"),
1409        ];
1410
1411        let array1 = {
1412            let mut builder = StringViewBuilder::new().with_fixed_block_size(8);
1413            test_data.into_iter().for_each(|v| builder.append_option(v));
1414            builder.finish()
1415        };
1416        let array2 = {
1417            // create a new array with the same data but different layout
1418            let mut builder = StringViewBuilder::new().with_fixed_block_size(100);
1419            test_data.into_iter().for_each(|v| builder.append_option(v));
1420            builder.finish()
1421        };
1422        assert_eq!(array1, array1.clone());
1423        assert_eq!(array2, array2.clone());
1424        assert_eq!(array1, array2);
1425    }
1426
1427    /// Integration tests for `inline_key_fast` covering:
1428    ///
1429    /// 1. Monotonic ordering across increasing lengths and lexical variations.
1430    /// 2. Cross-check against `GenericBinaryArray` comparison to ensure semantic equivalence.
1431    ///
1432    /// This also includes a specific test for the “bar” vs. “bar\0” case, demonstrating why
1433    /// the length field is required even when all inline bytes fit in 12 bytes.
1434    ///
1435    /// The test includes strings that verify correct byte order (prevent reversal bugs),
1436    /// and length-based tie-breaking in the composite key.
1437    ///
1438    /// The test confirms that `inline_key_fast` produces keys which sort consistently
1439    /// with the expected lexicographical order of the raw byte arrays.
1440    #[test]
1441    fn test_inline_key_fast_various_lengths_and_lexical() {
1442        /// Helper to create a raw u128 value representing an inline ByteView:
1443        /// - `length`: number of meaningful bytes (must be ≤ 12)
1444        /// - `data`: the actual inline data bytes
1445        ///
1446        /// The first 4 bytes encode length in little-endian,
1447        /// the following 12 bytes contain the inline string data (unpadded).
1448        fn make_raw_inline(length: u32, data: &[u8]) -> u128 {
1449            assert!(length as usize <= 12, "Inline length must be ≤ 12");
1450            assert!(
1451                data.len() == length as usize,
1452                "Data length must match `length`"
1453            );
1454
1455            let mut raw_bytes = [0u8; 16];
1456            raw_bytes[0..4].copy_from_slice(&length.to_le_bytes()); // length stored little-endian
1457            raw_bytes[4..(4 + data.len())].copy_from_slice(data); // inline data
1458            u128::from_le_bytes(raw_bytes)
1459        }
1460
1461        // Test inputs: various lengths and lexical orders,
1462        // plus special cases for byte order and length tie-breaking
1463        let test_inputs: Vec<&[u8]> = vec![
1464            b"a",
1465            b"aa",
1466            b"aaa",
1467            b"aab",
1468            b"abcd",
1469            b"abcde",
1470            b"abcdef",
1471            b"abcdefg",
1472            b"abcdefgh",
1473            b"abcdefghi",
1474            b"abcdefghij",
1475            b"abcdefghijk",
1476            b"abcdefghijkl",
1477            // Tests for byte-order reversal bug:
1478            // Without the fix, "backend one" would compare as "eno dnekcab",
1479            // causing incorrect sort order relative to "backend two".
1480            b"backend one",
1481            b"backend two",
1482            // Tests length-tiebreaker logic:
1483            // "bar" (3 bytes) and "bar\0" (4 bytes) have identical inline data,
1484            // so only the length differentiates their ordering.
1485            b"bar",
1486            b"bar\0",
1487            // Additional lexical and length tie-breaking cases with same prefix, in correct lex order:
1488            b"than12Byt",
1489            b"than12Bytes",
1490            b"than12Bytes\0",
1491            b"than12Bytesx",
1492            b"than12Bytex",
1493            b"than12Bytez",
1494            // Additional lexical tests
1495            b"xyy",
1496            b"xyz",
1497            b"xza",
1498        ];
1499
1500        // Create a GenericBinaryArray for cross-comparison of lex order
1501        let array: GenericBinaryArray<i32> =
1502            GenericBinaryArray::from(test_inputs.iter().map(|s| Some(*s)).collect::<Vec<_>>());
1503
1504        for i in 0..array.len() - 1 {
1505            let v1 = array.value(i);
1506            let v2 = array.value(i + 1);
1507
1508            // Assert the array's natural lexical ordering is correct
1509            assert!(v1 < v2, "Array compare failed: {v1:?} !< {v2:?}");
1510
1511            // Assert the keys produced by inline_key_fast reflect the same ordering
1512            let key1 = GenericByteViewArray::<BinaryViewType>::inline_key_fast(make_raw_inline(
1513                v1.len() as u32,
1514                v1,
1515            ));
1516            let key2 = GenericByteViewArray::<BinaryViewType>::inline_key_fast(make_raw_inline(
1517                v2.len() as u32,
1518                v2,
1519            ));
1520
1521            assert!(
1522                key1 < key2,
1523                "Key compare failed: key({v1:?})=0x{key1:032x} !< key({v2:?})=0x{key2:032x}",
1524            );
1525        }
1526    }
1527}