Expand description
The central type in Apache Arrow are arrays, which are a known-length sequence of values
all having the same type. This crate provides concrete implementations of each type, as
well as an Array trait that can be used for type-erasure.
§Building an Array
Most Array implementations can be constructed directly from iterators or Vec
Int32Array::from(vec![1, 2]);
Int32Array::from(vec![Some(1), None]);
Int32Array::from_iter([1, 2, 3, 4]);
Int32Array::from_iter([Some(1), Some(2), None, Some(4)]);
StringArray::from(vec!["foo", "bar"]);
StringArray::from(vec![Some("foo"), None]);
StringArray::from_iter([Some("foo"), None]);
StringArray::from_iter_values(["foo", "bar"]);
ListArray::from_iter_primitive::<Int32Type, _, _>([
    Some(vec![Some(1), None, Some(3)]),
    None,
    Some(vec![])
]);Additionally ArrayBuilder implementations can be
used to construct arrays with a push-based interface
// Create a new builder with a capacity of 100
let mut builder = Int16Array::builder(100);
// Append a single primitive value
builder.append_value(1);
// Append a null value
builder.append_null();
// Append a slice of primitive values
builder.append_slice(&[2, 3, 4]);
// Build the array
let array = builder.finish();
assert_eq!(5, array.len());
assert_eq!(2, array.value(2));
assert_eq!(&array.values()[3..5], &[3, 4])§Low-level API
Internally, arrays consist of one or more shared memory regions backed by a Buffer,
the number and meaning of which depend on the array’s data type, as documented in
the Arrow specification.
For example, the type Int16Array represents an array of 16-bit integers and consists of:
- An optional NullBufferidentifying any null values
- A contiguous ScalarBuffer<i16>of values
Similarly, the type StringArray represents an array of UTF-8 strings and consists of:
- An optional NullBufferidentifying any null values
- An offsets OffsetBuffer<i32>identifying valid UTF-8 sequences within the values buffer
- A values Bufferof UTF-8 encoded string data
Array constructors such as PrimitiveArray::try_new provide the ability to cheaply
construct an array from these parts, with functions such as PrimitiveArray::into_parts
providing the reverse operation.
// Create a Int32Array from Vec without copying
let array = Int32Array::new(vec![1, 2, 3].into(), None);
assert_eq!(array.values(), &[1, 2, 3]);
assert_eq!(array.null_count(), 0);
// Create a StringArray from parts
let offsets = OffsetBuffer::new(vec![0, 5, 10].into());
let array = StringArray::new(offsets, b"helloworld".into(), None);
let values: Vec<_> = array.iter().map(|x| x.unwrap()).collect();
assert_eq!(values, &["hello", "world"]);As Buffer, and its derivatives, can be created from Vec without copying, this provides
an efficient way to not only interoperate with other Rust code, but also implement kernels
optimised for the arrow data layout - e.g. by handling buffers instead of values.
§Zero-Copy Slicing
Given an Array of arbitrary length, it is possible to create an owned slice of this
data. Internally this just increments some ref-counts, and so is incredibly cheap
let array = Int32Array::from_iter([1, 2, 3]);
// Slice with offset 1 and length 2
let sliced = array.slice(1, 2);
assert_eq!(sliced.values(), &[2, 3]);§Downcasting an Array
Arrays are often passed around as a dynamically typed &dyn Array or ArrayRef.
For example, RecordBatch stores columns as ArrayRef.
Whilst these arrays can be passed directly to the compute, csv, json, etc… APIs,
it is often the case that you wish to interact with the concrete arrays directly.
This requires downcasting to the concrete type of the array:
// Safely downcast an `Array` to an `Int32Array` and compute the sum
// using native i32 values
fn sum_int32(array: &dyn Array) -> i32 {
    let integers: &Int32Array = array.as_any().downcast_ref().unwrap();
    integers.iter().map(|val| val.unwrap_or_default()).sum()
}
// Safely downcasts the array to a `Float32Array` and returns a &[f32] view of the data
// Note: the values for positions corresponding to nulls will be arbitrary (but still valid f32)
fn as_f32_slice(array: &dyn Array) -> &[f32] {
    array.as_any().downcast_ref::<Float32Array>().unwrap().values()
}The cast::AsArray extension trait can make this more ergonomic
fn as_f32_slice(array: &dyn Array) -> &[f32] {
    array.as_primitive::<Float32Type>().values()
}§Alternatives to ChunkedArray Support
The Rust implementation does not provide the ChunkedArray abstraction implemented by the Python and C++ Arrow implementations. The recommended alternative is to use one of the following:
- Vec<ArrayRef>a simple, eager version of a- ChunkedArray
- impl Iterator<Item=ArrayRef>a lazy version of a- ChunkedArray
- impl Stream<Item=ArrayRef>a lazy async version of a- ChunkedArray
Similar patterns can be applied at the RecordBatch level. For example, DataFusion makes
extensive use of RecordBatchStream.
This approach integrates well into the Rust ecosystem, simplifies the implementation and encourages the use of performant lazy and async patterns.
use std::sync::Arc;
use arrow_array::{ArrayRef, Float32Array, RecordBatch, StringArray};
use arrow_array::cast::AsArray;
use arrow_array::types::Float32Type;
use arrow_schema::DataType;
let batches = [
   RecordBatch::try_from_iter(vec![
        ("label", Arc::new(StringArray::from(vec!["A", "B", "C"])) as ArrayRef),
        ("value", Arc::new(Float32Array::from(vec![0.1, 0.2, 0.3])) as ArrayRef),
    ]).unwrap(),
   RecordBatch::try_from_iter(vec![
        ("label", Arc::new(StringArray::from(vec!["D", "E"])) as ArrayRef),
        ("value", Arc::new(Float32Array::from(vec![0.4, 0.5])) as ArrayRef),
   ]).unwrap(),
];
let labels: Vec<&str> = batches
   .iter()
   .flat_map(|batch| batch.column(0).as_string::<i32>())
   .map(Option::unwrap)
   .collect();
let values: Vec<f32> = batches
   .iter()
   .flat_map(|batch| batch.column(1).as_primitive::<Float32Type>().values())
   .copied()
   .collect();
assert_eq!(labels, ["A", "B", "C", "D", "E"]);
assert_eq!(values, [0.1, 0.2, 0.3, 0.4, 0.5]);Re-exports§
- pub use array::*;
Modules§
- array
- The concrete array definitions
- builder
- Defines push-based APIs for constructing arrays
- cast
- Defines helper functions for downcasting dyn Arrayto concrete types
- ffiffi
- Contains declarations to bind to the C Data Interface.
- ffi_stream ffi
- Contains declarations to bind to the C Stream Interface.
- iterator
- Idiomatic iterators for Array
- run_iterator 
- Idiomatic iterator for RunArray
- temporal_conversions 
- Conversion methods for dates and times.
- timezone
- Timezone for timestamp arrays
- types
- Zero-sized types used to parameterize generic array implementations
Macros§
- create_array 
- Creates an array from a literal slice of values, suitable for rapid testing and development.
- downcast_dictionary_ array 
- Downcast an Arrayto aDictionaryArraybased on itsDataType, accepts a number of subsequent patterns to match the data type
- downcast_integer 
- Given one or more expressions evaluating to an integer DataTypeinvokes the provided macromwith the corresponding integerArrowPrimitiveType, followed by any additional arguments
- downcast_integer_ array 
- Given one or more expressions evaluating to an integer PrimitiveArrayinvokes the provided macro with the corresponding array, along with match statements for any non integer array types
- downcast_primitive 
- Given one or more expressions evaluating to primitive DataTypeinvokes the provided macromwith the correspondingArrowPrimitiveType, followed by any additional arguments
- downcast_primitive_ array 
- Downcast an Arrayto aPrimitiveArraybased on itsDataTypeaccepts a number of subsequent patterns to match the data type
- downcast_run_ array 
- Downcast an Arrayto aRunArraybased on itsDataType, accepts a number of subsequent patterns to match the data type
- downcast_run_ end_ index 
- Given one or more expressions evaluating to an integer DataTypeinvokes the provided macromwith the corresponding integerRunEndIndexType, followed by any additional arguments
- downcast_temporal 
- Given one or more expressions evaluating to primitive DataTypeinvokes the provided macromwith the correspondingArrowPrimitiveType, followed by any additional arguments
- downcast_temporal_ array 
- Downcast an Arrayto a temporalPrimitiveArraybased on itsDataTypeaccepts a number of subsequent patterns to match the data type
- record_batch 
- Creates a record batch from literal slice of values, suitable for rapid testing and development.
Structs§
- RecordBatch 
- A two-dimensional batch of column-oriented data with a defined schema.
- RecordBatch Iterator 
- Generic implementation of RecordBatchReader that wraps an iterator.
- RecordBatch Options 
- Options that control the behaviour used when creating a RecordBatch.
- Scalar
- A wrapper around a single value Arraythat implementsDatumand indicates compute kernels should treat this array as a scalar value (a single value).
Traits§
- ArrowNative Type Op 
- Trait for ArrowNativeTypethat adds checked and unchecked arithmetic operations, and totally ordered comparison operations
- ArrowNumeric Type 
- A subtype of primitive type that represents numeric values.
- Datum
- A possibly ScalarArray
- RecordBatch Reader 
- Trait for types that can read RecordBatch’s.
- RecordBatch Writer 
- Trait for types that can write RecordBatch’s.