1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
//! An [`ArraySection`] is an array where only a (contiguous) subsection of its data may be viewed.
//!
//! This can be useful in const functions that wish to return an array of size `N`,
//! but with some elements potentially unused.
//!
//! `#![no_std]` compatible
//!
//! ```
//! # use array_section::ArraySection;
//! /// Returns an array of the square numbers smaller than both x and N.
//! const fn squares_smaller_than<const N: usize>(x: usize) -> ArraySection<usize, N> {
//! let mut i = 0;
//! let mut ans = [0; N];
//! while i * i < N && i * i < x {
//! ans[i] = i * i;
//! i += 1;
//! }
//! ArraySection::new(ans, 0..i)
//! }
//! assert_eq!(squares_smaller_than::<10>(16), [0, 1, 4, 9]);
//! ```
//!
//! # Features
//! `std`: derives the [`Error`](std::error::Error) trait for the [`TryFromArraySectionError`] type.
//! `alloc`: enables conversion of the section into [`Vec`]s and [`Box`]ed slices.
#![cfg_attr(not(feature = "std"), no_std)]
use core::{
cmp::Ordering,
hash::{Hash, Hasher},
iter::FusedIterator,
ops::{Index, Range},
slice::SliceIndex,
};
#[cfg(all(feature = "alloc", not(feature = "std")))]
extern crate alloc;
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::{boxed::Box, vec::Vec};
/// An array where only a section of the data may be viewed,
/// as the other data may e.g. not uphold some invariant.
///
/// Indexing into the `ArraySection` indices only into the section:
/// ```
/// # use array_section::ArraySection;
/// // v v
/// const AS: ArraySection<i32, 4> = ArraySection::new([0, 1, 2, 0], 1..3);
/// assert_eq![AS[0], 1];
/// assert_eq![AS[1], 2];
/// ```
///
/// The other data is not considered in comparisons, ordering or hashing:
/// ```
/// # use array_section::ArraySection;
/// // v v
/// const A1: [i32; 4] = [1, 3, 7, 1];
/// const A2: [i32; 5] = [0, 3, 7, 100, -5];
/// const AS1: ArraySection<i32, 4> = ArraySection::new(A1, 1..3);
/// const AS2: ArraySection<i32, 5> = ArraySection::new(A2, 1..3);
///
/// // Even though the arrays are different
/// assert_ne!(A1.as_slice(), A2.as_slice());
/// // The sections are the same
/// assert_eq!(AS1, AS2);
/// ```
#[derive(Debug, Clone, Copy, Eq)]
pub struct ArraySection<T, const N: usize> {
start: usize,
end: usize,
array: [T; N],
}
/// Only hashes the data in the section, and not the full array.
impl<const N: usize, T: Hash> Hash for ArraySection<T, N> {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_slice().hash(state);
}
}
/// Only checks the data in the sections, and not the full arrays.
impl<const N: usize, const M: usize, T: PartialOrd> PartialOrd<ArraySection<T, M>>
for ArraySection<T, N>
{
#[inline]
fn partial_cmp(&self, other: &ArraySection<T, M>) -> Option<Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
/// Only compares the data in the sections and not the full arrays.
impl<const N: usize, T: Ord> Ord for ArraySection<T, N> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl<const N: usize, T> ArraySection<T, N> {
/// Restrict an array so that only elements within the given range are visible.
///
/// # Panics
///
/// Panics if the range of indices is out of bounds of the array.
#[inline]
pub const fn new(array: [T; N], section: Range<usize>) -> Self {
assert!(
section.start < N && section.end <= N,
"the sub-range must be in bounds"
);
if section.start > section.end {
Self {
start: 0,
end: 0,
array,
}
} else {
Self {
start: section.start,
end: section.end,
array,
}
}
}
/// Returns the first index of the full underlying array that is part of the section.
/// I.e. the section is the subrange `start ..`[`end`](ArraySection::end).
#[inline]
pub const fn start(&self) -> usize {
self.start
}
/// Returns the first index of the full underlying array that is outside the section (to the right).
/// I.e. the section is the subrange [`start`](ArraySection::start)`.. end`.
#[inline]
pub const fn end(&self) -> usize {
self.end
}
/// Returns a reference to the full underlying array if it is fully populated.
#[inline]
pub const fn try_as_full_array(&self) -> Option<&[T; N]> {
if self.section_is_full_array() {
Some(&self.array)
} else {
None
}
}
/// Returns a reference to the full underlying array.
#[inline]
pub const fn as_full_array(&self) -> &[T; N] {
&self.array
}
/// Converts `self` into the full underlying array.
///
/// If you wish to use this in const context the destructor of `T` must be trivial,
/// use [`into_full_array_const`](ArraySection::into_full_array_const)
#[inline]
pub fn into_full_array(self) -> [T; N] {
self.array
}
/// Returns the section of the array as a slice.
#[inline]
pub const fn as_slice(&self) -> &[T] {
self.array
// Split &[head, section, tail] into (&[head], &[section, tail])
.split_at(self.start)
// and extract the second element of the tuple.
.1
// Split &[section, tail] into (&[section], &[tail])
.split_at(self.end - self.start)
// and extract the first element of the tuple.
.0
}
/// Returns the length of the array section.
#[inline]
pub const fn len(&self) -> usize {
self.as_slice().len()
}
/// Returns whether the array section is empty.
#[inline]
pub const fn is_empty(&self) -> bool {
self.as_slice().is_empty()
}
/// Returns whether the section is just the entire array.
/// If this is `true` it is completely fine to call [`as_full_array`](ArraySection::as_full_array)
/// or [`into_full_array`](ArraySection::into_full_array).
#[inline]
pub const fn section_is_full_array(&self) -> bool {
self.len() == N
}
/// Returns an iterator over the array section.
#[inline]
pub fn iter(&self) -> ArraySectionIter<'_, T> {
ArraySectionIter::new(self.as_slice().iter())
}
}
#[cfg(any(feature = "alloc", feature = "std"))]
impl<T: Clone, const N: usize> From<ArraySection<T, N>> for Vec<T> {
/// Clones the contents of the section into a [`Vec`].
#[inline]
fn from(value: ArraySection<T, N>) -> Vec<T> {
value.as_slice().into()
}
}
#[cfg(any(feature = "alloc", feature = "std"))]
impl<T: Clone, const N: usize> From<ArraySection<T, N>> for Box<[T]> {
/// Clones the contents of the section into a [`Box`]ed slice.
#[inline]
fn from(value: ArraySection<T, N>) -> Box<[T]> {
value.as_slice().into()
}
}
impl<T: Copy, const N: usize> ArraySection<T, N> {
/// Converts `self` into the full underlying array.
pub const fn into_full_array_const(self) -> [T; N] {
self.array
}
}
// region: TryFrom impls
/// Returned when a `TryFrom` conversion of an [`ArraySection`] into an array fails.
///
/// Contains the original `ArraySection`, which can be retrieved via the [`array_section`](TryFromArraySectionError::array_section) function.
#[derive(Debug, Clone, Copy)]
pub struct TryFromArraySectionError<T, const N: usize>(ArraySection<T, N>);
impl<T, const N: usize> TryFromArraySectionError<T, N> {
/// Returns the original [`ArraySection`].
pub fn array_section(self) -> ArraySection<T, N> {
self.0
}
}
impl<T, const N: usize> core::fmt::Display for TryFromArraySectionError<T, N> {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "the array was not fully populated")
}
}
#[cfg(feature = "std")]
impl<T: core::fmt::Debug, const N: usize> std::error::Error for TryFromArraySectionError<T, N> {}
impl<T, const N: usize> From<TryFromArraySectionError<T, N>> for ArraySection<T, N> {
fn from(value: TryFromArraySectionError<T, N>) -> Self {
value.0
}
}
/// Converts the `ArraySection` into an array if the section is actually the entire array.
impl<const N: usize, T> TryFrom<ArraySection<T, N>> for [T; N] {
type Error = TryFromArraySectionError<T, N>;
#[inline]
fn try_from(value: ArraySection<T, N>) -> Result<Self, Self::Error> {
if value.section_is_full_array() {
Ok(value.array)
} else {
Err(TryFromArraySectionError(value))
}
}
}
// endregion: TryFrom impls
impl<const N: usize, T> From<[T; N]> for ArraySection<T, N> {
#[inline]
fn from(value: [T; N]) -> Self {
Self {
start: 0,
end: N,
array: value,
}
}
}
impl<const N: usize, T> AsRef<[T]> for ArraySection<T, N> {
#[inline]
fn as_ref(&self) -> &[T] {
self.as_slice()
}
}
impl<const N: usize, T, I: SliceIndex<[T]>> Index<I> for ArraySection<T, N> {
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
&self.as_slice().index(index)
}
}
// region: PartialEq impls
impl<const N: usize, const M: usize, T, U> PartialEq<ArraySection<T, N>> for ArraySection<U, M>
where
[U]: PartialEq<[T]>,
{
#[inline]
fn eq(&self, other: &ArraySection<T, N>) -> bool {
self.as_slice().eq(other.as_slice())
}
}
impl<const N: usize, T, U> PartialEq<[U]> for ArraySection<T, N>
where
U: PartialEq<T>,
{
#[inline]
fn eq(&self, other: &[U]) -> bool {
other == self.as_slice()
}
}
impl<const N: usize, T, U> PartialEq<ArraySection<T, N>> for [U]
where
U: PartialEq<T>,
{
#[inline]
fn eq(&self, other: &ArraySection<T, N>) -> bool {
self == other.as_slice()
}
}
impl<const N: usize, const M: usize, T, U> PartialEq<[T; N]> for ArraySection<U, M>
where
[U]: PartialEq<[T]>,
{
#[inline]
fn eq(&self, other: &[T; N]) -> bool {
self.as_slice().eq(other.as_slice())
}
}
impl<const N: usize, const M: usize, T, U> PartialEq<ArraySection<U, M>> for [T; N]
where
[T]: PartialEq<[U]>,
{
#[inline]
fn eq(&self, other: &ArraySection<U, M>) -> bool {
self.as_slice().eq(other.as_slice())
}
}
// endregion: PartialEq impls
impl<const N: usize, T> IntoIterator for ArraySection<T, N> {
type IntoIter = ArraySectionIntoIter<T, N>;
type Item = <ArraySectionIntoIter<T, N> as Iterator>::Item;
#[inline]
fn into_iter(self) -> Self::IntoIter {
let start = self.start;
let len = self.len();
ArraySectionIntoIter::new(self.array.into_iter().skip(start).take(len))
}
}
impl<'a, const N: usize, T> IntoIterator for &'a ArraySection<T, N> {
type IntoIter = ArraySectionIter<'a, T>;
type Item = <ArraySectionIter<'a, T> as Iterator>::Item;
#[inline]
fn into_iter(self) -> Self::IntoIter {
ArraySectionIter::new(self.as_slice().iter())
}
}
pub use array_section_iter::ArraySectionIter;
mod array_section_iter {
use super::FusedIterator;
/// Created by the [`iter`](super::ArraySection::iter) function on [`ArraySection`](super::ArraySection), see it for more information.
#[derive(Debug, Clone)]
pub struct ArraySectionIter<'a, T>(core::slice::Iter<'a, T>);
impl<'a, T> ArraySectionIter<'a, T> {
pub(crate) const fn new(iter: core::slice::Iter<'a, T>) -> Self {
Self(iter)
}
}
impl<'a, T> Iterator for ArraySectionIter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
fn last(self) -> Option<Self::Item> {
self.0.last()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.0.nth(n)
}
fn count(self) -> usize {
self.0.count()
}
}
impl<'a, T> DoubleEndedIterator for ArraySectionIter<'a, T> {
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
}
impl<'a, T> ExactSizeIterator for ArraySectionIter<'a, T> {
fn len(&self) -> usize {
self.0.len()
}
}
impl<'a, T> FusedIterator for ArraySectionIter<'a, T> {}
}
pub use array_section_into_iter::ArraySectionIntoIter;
mod array_section_into_iter {
use super::FusedIterator;
#[derive(Debug, Clone)]
/// Created by the [`into_iter`](super::ArraySection::into_iter) function on [`ArraySection`](super::ArraySection), see it for more information.
pub struct ArraySectionIntoIter<T, const N: usize>(
core::iter::Take<core::iter::Skip<core::array::IntoIter<T, N>>>,
);
impl<const N: usize, T> ArraySectionIntoIter<T, N> {
pub(crate) const fn new(
iter: core::iter::Take<core::iter::Skip<core::array::IntoIter<T, N>>>,
) -> Self {
Self(iter)
}
}
impl<const N: usize, T> Iterator for ArraySectionIntoIter<T, N> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let l = self.0.len();
(l, Some(l))
}
#[inline]
fn nth(&mut self, index: usize) -> Option<Self::Item> {
self.0.nth(index)
}
#[inline]
fn last(self) -> Option<T> {
self.0.last()
}
#[inline]
fn count(self) -> usize {
self.0.count()
}
}
impl<const N: usize, T> FusedIterator for ArraySectionIntoIter<T, N> {}
impl<const N: usize, T> ExactSizeIterator for ArraySectionIntoIter<T, N> {}
impl<const N: usize, T> DoubleEndedIterator for ArraySectionIntoIter<T, N> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
}
}