1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
use num_complex::{Complex};
use num_traits::{Float};
use crate::{MMul, Diag, QRHouseholder, Matrix};
const ITERATIONS: usize = 1000;
pub trait Eig: Matrix
{
type Output;
fn eig(&self) -> Self::Output;
}
impl<F: Float, const L: usize, const H: usize> Eig for [[Complex<F>; L]; H]
where
[[Complex<F>; L]; H]: QRHouseholder,
<[[Complex<F>; L]; H] as QRHouseholder>::OutputR: Diag
+ MMul<<[[Complex<F>; L]; H] as QRHouseholder>::OutputQ, Output = [[Complex<F>; L]; H]>
{
type Output = <<[[Complex<F>; L]; H] as QRHouseholder>::OutputR as Diag>::Output;
fn eig(&self) -> Self::Output
{
let mut a = self.clone();
for _ in 0..ITERATIONS
{
let (q, r) = a.qr_householder();
a = r.mul(q)
}
let r = a.qr_householder().1;
r.diag()
}
}
impl<const L: usize, const H: usize> Eig for [[f32; L]; H]
where
Self: Matrix,
[[Complex<f32>; L]; H]: Eig
{
type Output = <[[Complex<f32>; L]; H] as Eig>::Output;
fn eig(&self) -> Self::Output
{
self.map(|ar| ar.map(|arc| Complex::from(arc))).eig()
}
}
impl<const L: usize, const H: usize> Eig for [[f64; L]; H]
where
Self: Matrix,
[[Complex<f64>; L]; H]: Eig
{
type Output = <[[Complex<f64>; L]; H] as Eig>::Output;
fn eig(&self) -> Self::Output
{
self.map(|ar| ar.map(|arc| Complex::from(arc))).eig()
}
}